/
/
/
Polynomial Whose Values at the Integers are n-th Power of Integers in a Quadratic Field

Polynomial Whose Values at the Integers Are N-Th Power of Integers in a Quadratic Field

Original Research ArticleJan 5, 2018Vol. 17 No. 1 (2017)

Abstract

Let f(x1,x2,...,xk)   [x1,x2,...,xk], where   is a quadratic field. We investigate the polynomial f (x1,x2,...,xkwhich becomes always an nth power of an quadratic integer using the technique of Kojima. It is shown that if f (1,2,...k) is an nth power of an element in Ok , the ring of integers of , then f (x1,x2,...,xk)=((x1,x2,...xk))n,for some (x1,x2,...,xkO[x1,x2,...xk].

Keywords: integer-valued polynomial, quadratic integer.

*Corresponding author:       E-mail: janyarak.to@wu.ac.th

How to Cite

Tongsomporn*, J. ., & Laohakosol, V. . (2018). Polynomial Whose Values at the Integers are n-th Power of Integers in a Quadratic Field. CURRENT APPLIED SCIENCE AND TECHNOLOGY, 13-21.

References

  • Kojima, T., 1915. Note on number-theoretical properties of algebraic functions. Tohoku Math. J., 8, 24-27.
  • Fuchs, W.H.J., 1950. A polynomial the square of another polynomial. Amer. Math. Monthly, 57, 114-116.
  • Shapiro, H.S., 1957. The range of an integer-valued polynomial. Amer. Math. Monthly, 64, 424-425.
  • Schinzel, A., 1982. Selected Topics on Polynomials. University of Michigan Press.
  • Magidin, A., McKinnon, D., 2005. Gauss’s lemma for number fields. Amer. Math. Monthly, 112(5), 385-416.

Author Information

Janyarak Tongsomporn*

School of Science, Walailak University, Nakhon Si Thammarat, Thailand

Vichian Laohakosol

Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok, Thailand

About this Article

Journal

Vol. 17 No. 1 (2017)

Type of Manuscript

Original Research Article

Keywords

integer-valued polynomial, quadratic integer.

Published

5 January 2018