/
/
/
Effects of Preharvest Boron, Calcium Sulfate Treatment and Postharvest Calcium Chloride Peduncle Infiltration on Chilling Injury Alleviation of Queen Pineapple cv. Sawi Fruit

Effects of Preharvest Boron, Calcium Sulfate Treatment and Postharvest Calcium Chloride Peduncle Infiltration on Chilling Injury Alleviation of Queen Pineapple Cv. Sawi Fruit

Original Research ArticleJan 14, 2021Vol. 21 No. 3 (2021)

Abstract

The aim of this study was to determine the incorporative effects of preharvest boron (B) or calcium sulfate (CaSO4) application and postharvest calcium chloride (CaCl2) peduncle infiltration on chilling injury (CI) alleviation of Queen pineapple during commercial cold storage (13°C). Pineapple fruits were sprayed with 0.25% B four times a month after one month of anthesis, or CaSO4 (100 kg per 400 m2) was applied during fruit development. The fruits were harvested after 135 days of flower induction. Both preharvest B and treated fruits were then peduncle-infiltrated with 2% CaCl2 for 3 days and stored at cold temperature (CT) for 14 days. Control fruits were not peduncle-infiltrated with CaCl2.Visual appearance of half cut fruit, CI score, the amount of fruit having CI, colour attributes, browning index (BI) value and electrolyte leakage (EL) of tissue adjacent to the core were determined after storage at CT for 7 or 14 days, followed by leaving at room temperature (RT), 28 ± 1°C, for 2 days. The results show that the incorporative application of preharvest CaSO4 with CaCl2 peduncle infiltration (CaSO4+CaCl2) alleviated CI, delayed decrease in lightness (L*) and chroma values, and also increased BI and total colour difference (∆E*) values during storage compared with control and the incorporative application of preharvest B with CaCl2 treatment (B + CaCl2). The treatment with CaSO4 + CaCl2 lowered CI severity and the amount of fruit having CI when compared to B + CaCl2 and control treatments, respectively. Both treatments had no effect on the hue value over the storage period. Therefore, CaSO4 + CaCl2 treatment is an alternative method for alleviating CI of Queen pineapples.

Keywords: Queen pineapple; CaSO4; boron; CaCl2; chilling injury

*Corresponding author: E-mail: suriyan.su@kmitl.ac.th

How to Cite

Youryon, P. ., & Supapvanich*, S. undefined. . (2021). Effects of Preharvest Boron, Calcium Sulfate Treatment and Postharvest Calcium Chloride Peduncle Infiltration on Chilling Injury Alleviation of Queen Pineapple cv. Sawi Fruit. CURRENT APPLIED SCIENCE AND TECHNOLOGY, 456-466.

References

  • Quyen, D.T.M., Jommwong, A. and Rachtanapun, P., 2013. Influence of storage temperature on ethanol content, microbial growth and other properties of queen pineapple fruit. International Journal of Agriculture and Biology, 15, 207-214.
  • Paull, R.E. and Rohrbach, K.G., 1985. Symptom development of chilling injury in pineapple fruit. Journal of the American Society for Horticultural Science, 110, 100-105.
  • Hong, K., Xu, H., Wang, J., Zhang, L., Hu, H., Jia Z. and Gong, D., 2013. Quality changes and internal browning developments of summer pineapple fruit during storage at different temperature. Scientia Horticulturae 151, 68-74.
  • Wijeratnam, R.S.W, Abeyesakere, M. and Surjani, P., 1993. Studies on black heart disorder in pineapple varieties grown in Sri Lanka. Acta Horticulturae, 334, 317-324.
  • Pusittigul, I., Kondo, S. and Siriphanich, J., 2012. Internal browning of pineapple (Ananas comosus L.) fruit and endogenous concentrations of abscisic acid and gibberellins during low temperature storage. Scientia Horticulturae, 146, 45-51.

Author Information

Pannipa Youryon

Department of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon, Thailand

Suriyan Supapvanich*

Department of Agricultural Education, Faculty of Industrial Education and Technology, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok, Thailand

About this Article

Journal

Vol. 21 No. 3 (2021)

Type of Manuscript

Original Research Article

Keywords

Queen pineapple; CaSO4; boron; CaCl2; chilling injury

Published

14 January 2021