In this work, we present the general solution of a functional equation f (ux + vy,uyn+ zw)= f (x,y,z)+ f (u,v,w)+ f (x,y,z) f (u,v,w) for all x,y,u,v,w, z
, which arises from determinant of some symmetric 3 x 3 matrices. We also determine the general solution of its Pexiderized version f (ux+vy,uy + vx,zw)=
(x,y,z)+ h (u,v,w)+
(x,y,z) n (u,v,w) for all x,y,u,v,w,z
,without any regularity assumptions on unknown functions f,
,h,
,n :
3
.
Keywords: Determinant of matrix, functional equation, logarithmic function, multiplicative function
*Corresponding author: Tel.: +662 564 4440 Fax: +662 564 4489
E-mail: charinthip@mathstat.sci.tu.ac.th
Hengkrawit*, C. ., & Suriyacharoen, W. . (2018). A Functional Equation Related to Determinant of Some 3 x3 Symmetric Matrices and Its Pexiderized Form. CURRENT APPLIED SCIENCE AND TECHNOLOGY, 68-80.

https://cast.kmitl.ac.th/articles/129038