/
/
/
The cut locus of a surface of revolution

The Cut Locus of a Surface of Revolution

Original Research ArticleMar 30, 2018Vol. 3 No. 1 (2003)

Abstract

-

Keyword : -

E-mail: cast@kmitl.ac.th

How to Cite

Tanaka, M. . (2018). The cut locus of a surface of revolution. CURRENT APPLIED SCIENCE AND TECHNOLOGY, 73-76.

References

  • D. Elerath, An improved Toponogov comparison theorem for non-negatively curved manifolds, J. Differential Geom., 15 (1980), 187-216.
  • J.J. Hebda, Metric structure of cut loci in surfaces and Ambrose’s problem, J. of Differential Geom., 40 91994), 621-642.
  • J. Gravesen, S. Markvosen, R. Sinclair and M. Tanaka, The cut loci of torus of revolution, to appear.
  • R. Sinclair and M. Tanaka, Loki: Software for computing cut loci, Experimental Mathematics 11, (2002), 1-25.
  • K. Shiohama and M. Tanaka, Cut loci and distance spheres on Alexandrov surfaces, Sémimaires & Congrés, Collection SMF No. 1, Actes de la table ronde de Géométrie différentielle en I’honneur Marcel Berger, (1996), 531-560.

Author Information

Minoru Tanaka

Tokai University, Japan

About this Article

Journal

Vol. 3 No. 1 (2003)

Type of Manuscript

Original Research Article

Keywords

-

Published

30 March 2018