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Abstract 
 

This study investigates a transmission model of Hand-Foot-Mouth disease (HFMD) where the age 

structure of the population is taken into account. Most infections in Thailand occur among 

children below the age of 10 years, whose immunity to HFMD is lower than people of age greater 

than 10 years. Therefore, a mathematical model was developed in which the population was 

separated into two groups with respect to age: one comprised of children aged less than 10 years, 

and another comprised of the rest of the population. The reproductive number was obtained by the 

next-generation matrix approach. Global asymptotical stability of the developed model was 

assured using Lyapunov’s direct method. The model was validated by showing that the 2D and 3D 

trajectories of the numerical solutions for the different sub-population groups converged to the 

endemic equilibrium states when the reproduction number was greater than one, thus supporting 

the theoretical conclusions. Results show that the time series behaviors of the different normalized 

populations groups converge to the disease-free state when the values of the parameters are such 

that the basic reproductive number is 0.591481 (i.e., less than one) and to an endemic state when 

the values of the parameters are such that 0 54.4523R =  and
 0 192.575R = (i.e. greater than one). 

The results of this study can suggest ways for reducing the outbreak of this disease. 
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1. Introduction 

 

Hand-Foot-Mouth Disease (HFMD) is a disease caused by enteroviruses, Coxsackie virus groups 

A and B [1-4]. The disease often is found in children because children have lower immunity. The 

disease only infects humans. The symptoms appear 3-7 days after the exposure to the virus [2, 5]. 

Most infected people exhibit only asymptomatic symptoms or a slight fever which is called 

Exanthematous fever. Some, however, will develop blisters in the mouth. When this happens, the 

sick person is said to be infected with Herpangina Hand-Foot-Mouth Disease, a viral 

haemorrhagic conjunctivitis disease. As we mentioned, most infected people do not show any 

symptoms. However, children of age less than 10 years are more susceptible to contract the 

disease than those older than 10 years of age since they may not have developed the immunity 

obtained from the asymptomatic infections. HFMD is transmitted through direct contact between 

the mouth and a hand or shared object such as spoon, glass or toy that has been contaminated with 

the mucus or saliva from the blister of an infected person. Most of this contact and spread occurs 

among children in nurseries or lower grades at schools. Children in higher grades and adults would 

have developed the immunity to the virus through exposure to it that they were unaware of [6]. 

HFMD became an important public health problem in Thailand in 1997, and outbreaks of 

Enterovirus 71 infections were reported in other countries in the Asia-Pacific region, such as 

Malaysia and Brunei [7]. In 1998 and 2000, outbreaks were reported in Taiwan and Singapore. 

Thailand reported outbreak beginning in 2003, and these have continued until the present [8-10]. 

Figure 1 shows the outbreaks of HFMD in Thailand over the period 2003-2018. The age 

distribution of the patients in 2020 was reported to be 93.37% for patients aged between 0-10 

years, and 6.63% for patients older than 10 year of age [11]. As we see, the younger the child is, 

the higher the incidence of infection is. This is because they have not yet been exposed to the 

virus. If they had been exposed, they would have developed immunity to the disease. According to 

Figure 2, the study of HFMD divides participants into 2 groups; the first group is people between 

0-10 years and the other group is people older than 10 years, because two groups have distinctly 

different infections.  

 

 
 

Figure 1. Reports on outbreaks of Hand-Foot-Mouth Disease (HFMD) from 2003 to 

2018 in Thailand [12] 
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Figure 2. Reports on outbreaks of Hand-Foot-Mouth Disease (HFMD) by age structure 

in Thailand from 2003 to 2018 [13] 

 

Several mathematical models to describe HFMD have been developed in the literature. In 

2016, Li et al. [14] developed a SEIHR (S = Susceptible, E = Infected but not infectious, I = 

Infectious (clinical and subclinical), H = Hospitalized and R = Recovered) model to study HFMD 

in China. In their model, like ours, the population was divided in two groups; children (0-16 years) 

and adults (older than 16 years) and applied to the HFMD data for China from 2009 to 2014. 

Earlier, Wang et al. [3] conducted a time series analysis on its relationship with weather. They 

looked at the links between the admission of HFDM patients in the public hospitals in Hong Kong 

between 2008 and 2011 and the weather. In 2018, Tan and Cao [2] studied a dynamic model of 

HFMD which included the effects of vaccination in some children.  They only considered children 

of age below 10 years since their immune systems were relatively intact (i.e. the antibodies to the 

HFMD virus were not present because of the unaware exposure to the asymptomatic form of the 

infections). Chadsuthi and Wichapeng [1] developed a mathematical model to study the effects of 

the contaminated environments in Bangkok and used it to understand the course of the HFMD 

from the reported information of individuals hospitalized with this disease. A number of age-

structured models in the literature have also been developed, albeit for other diseases such as 

tuberculosis (TB) [15], Chikungunya [16] and HIV [17]. These models are based on the premise 

that the susceptibility of individuals varies with time, and consequently, involves the need for 

partial differential equations models. In this paper, the model of Pongsumpun and Wongvanich 

[18] is further developed. An assumption is that the susceptibility of individuals is quantized. In 

other words, the total population is divided into two groups, each with different finite 

susceptibility. The first group comprises population of children between 0-10 years, while the 

second group comprises a population of all other ages. The developed model is easier to analyze 

and interpret, and allows for global stability analysis to be conducted, which was not conducted in 

the previous works of Li et al. [14] and Pongsumpun and Wongvanich [18]. 

The structure of this paper is as follows: Section 2 formulates the mathematical model in 

which the population groups are normalized and determines the positivity of solutions for the 

disease-free and endemic steady state. We used the next generation matrix method to find the 

basic reproductive number and used the Lyapounov function method to establish the global 

stability of the equilibrium point. Section 3 then shows the numerical simulation including some 

discussions. The paper is concluded in Section 4. 
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2. Materials and Methods 

 

In this study, we use the Susceptible-Exposed-Infected-Recovered (SEIR) model to describe the 

dynamic transmission of Hand-Foot-Mouth Disease in Thailand. We assume that the human 

population is divided into two groups; group one consists of children in the age group between 0-

10 years and group two is consists of people of age greater than 10 years. Each age group is 

divided into four subcategories; susceptible, exposed, infected and recovered. In this section, we 

used mathematical programs to help obtain the equilibrium point and basic reproductive number. 

 

2.1 Parameter and Equations of the model 
 

We suppose that hN is the total human population at time .t At time ,t  there are susceptible 

children between 0-10 years old ,aS aE are exposed children of ages between 0-10 years, aI are 

the infected children in this age group and aR are the recovered children in this age group. bS , 

,bE bI  and bR are populations of the corresponding human population groups above the age of 10 

years. The descriptions of the changes in the different groups within each population class are 

given as: 

• To begin, rate of change in the total human populations is due to the birth rate times the total 

human population ( hN ). The rate of change in the number of susceptible children ( aS ) 

depends upon the infection of a susceptible child when the child is exposed to an infected 

child (the exposure can be either direct or indirect). The rate of change is given by 1 a aS I

where 1  is the infection rate for human population of ages between 0-10 years, or by 

2 b bS I where 2 is the infection rate for human population of ages greater than 10 years. The 

number of susceptible children also decrease when they become 11 years old or when they 

die of natural causes. The rates of changes for these two factors are aS  and ,aS  

respectively. The rate of change in the number of exposed children aE depends on the rate of 

exposure of a susceptible child to infected population regardless of which population the 

infected person belongs to, the rate at which the exposed child becomes an infected child

( ),aE ε being the incubation rate, the rate at which a child becomes 11 years ( )aE and 

natural death of the exposed child ( ).aE The rate of change in the number of infected 

children ( aI ) depends on the incubation rate of the child, the rate at which the child recovers 

from the infected ( ),aI the rate at which the infected child becomes 11 years ( )aE  and the 

natural death of the infected child ( ).aI The rate of change in the number of recovered 

children ( )aR depends on the rate of recovery, the natural death of recovered child ( )aR and 

the rate at which the recovered child becomes 11 years ( ).aR  

• Regarding the second group, the rate of change in the number of susceptible adults (people 

older than 10 years) bS depends on the rate at which children (humans younger than 10 years 

old) become 11 years old, the rate at which any susceptible adult is exposed to an infected 

adult 2( )b bS I and the death of the susceptible person. The rate of change in the number of 

exposed human population ( bE ) depends on the rate at which infected human population are 
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exposed to the virus, the incubation rate ( )bE and natural death rate human of exposed 

human ( ).bE The rate of change in the number of infected human populations ( bI ) depends 

on the incubation rate ( ),bE the number of adults who recovered from the infected ( )bI

where  is the rate of recovery and the death rate of infected adults ( )bI who die of  natural 

causes. The rate of change in the number of recovered human population ( )bR depends on the 

recovery rate from the infected and natural death rate of recovered human populations ( ).bR  

Definition of parameters in our model is shown in Table 1. 

 

Table 1. Definition of parameters 
 

  Parameter   Biological meaning 

  Birth rate 

1  Infected rate for human populations when the ages are between 0-10 years 


 Incubation rate 

  Recovery rate 

  Rate at which the ages between 0-10 years changed to child above the age of 10 

years 

2  Infection rate for the human population whose age is greater than 10 years 


 Natural death rate of human 

hN
 

Total human population 

  

The mathematical description of the transmission of Hand-Food-Mouth Disease, which 

includes the age structure in Thailand, is given by the following systems of ordinary differential 

equations; 
'

1(t) ( )a h a a aS N S I S  =  − − +                (1) 

'

1(t) ( )a a a aE S I E   = − + +
      

         (2) 

' (t) ( )a a aI E I   = − + +                (3) 

' (t) ( )a a aR I R  = − +                 (4) 

'

2(t) ( )b a a a a b b bS S E I R S I S  = + + + − −               (5) 

'

2(t) ( )b b b bE S I E  = − +                (6) 

' (t) ( )b b bI E I  = − +                 (7) 

' (t)b b bR I R = −                 (8) 

 

The total population condition is also given by: 

(t) (t) (t) (t) (t) (t) (t) (t) (t).h a a a a b b b bN S E I R S E I R        = + + + + + + +  

 

2.2 Positivity invariant sets of solutions of SEIR model 
 

Proposition 1. Let (t), (t), (t), (t), (t), (t), (t), (t)a a a a b b b bS E I R S E I R   be the trajectories of the 

respective functions of equations (1)-(8) with the initial conditions: 
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(0), (0), (0), (0), (0), (0), (0), (0)a a a a b b b bS E I R S E I R , and also invariant set 

 8

1 2 1(t), (t), (t), (t), (t), (t), (t), (t) ; / ( ), / .a a a a b b b b hS E I R S E I R R W N W W   +   + =                     

and  is a positively invariant set for equations (1)-(8). 

Proof.  Combining by equations (1)-(8) by 
 

( )

( )

1 2(t) (t), (t)

(t) (t) (t) (t), (t) (t) (t) (t)a a a a b b b b

W W W

S E I R S E I R

=

= + + + + + +  

we have 

( )1 2(t) (t), (t)W W W  =

 
    

1 1

2 2

( ) ( ) ( ) ( ) ,

( ) ( ) ( )

h a a a a a a a a a a

a a a a b b b b b b b b b b

N S I S S I E E I I R

S E I R S I S S I E E I I R

             

          

 − − + + − + + + − + + + − + 
=  

+ + + − − + − + + − + + − 

 

( ) ( ) ( ) ( ) ,

( )

h a a a a

a a a a b b b b

N S E I R

S E I R S E I R

       

    

 − + − + − + − + 
=  

+ + + − − − − 

    

        ( )1 1 2( ) ,hN W W W   =  − + −  

Hence, 
1 1(t) ( ) 0hW N W  =  − +           for    1

( )

hN
W

 




+
                                                     (9) 

            2 1 2(t) 0W W W  = −                   for  1
2

W
W




                                          (10) 

From the above equations (9)-(10), (t) 0W    whenever  1
( )

hN
W

 




+
and 1

2 .
W

W



  Using an 

integrating factor,  we have    ( ) ( ) 1
1 2 1 20 (t), (t) (0)e , (0)e .

( )

t thN W
W W W W  

  

− + − 
  + + 

+ 
 

As ,t → and hence ( ) 1
1 20 (t), (t) , .

( )

hN W
W W



  

 
   

+   
The other case is similar. Thus is a 

positively invariant set. We can see that all equations described by equations (1)-(8) in the non-

negative octant 
8R+ are positively invariant [19]. 

Note that the infection rate does not introduce exogenous mortality in the population, and 

the latter is assumed to be constant in size at any given time. Therefore the rate of change of the 

total human populations is zero, and consequently the birth and death rates are equivalent. Then 

we have . =  

We introduce the normalized variables:
 

, , , ,a a a a
a a a a

h h h h

S E I R
s e i r

N N N N
= = = = , , , .b b b b

b b b b

h h h h

S E I R
s e i r

N N N N
= = = =  

Then we have the reduced equations as follows: 
'

1(t) ( )a h a a as N s i s  = − − +              (11) 

'

1(t) ( )a h a a ae N s i e   = − + +              (12) 

' (t) ( )a a ai e i   = − + +               (13) 

' (t) ( )a a ar i r  = − +               (14) 
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'

2(t) ( )b a a a a h b b bs s e i r N s i s  = + + + − −             (15) 

'

2(t) ( )b h b b be N s i e  = − +              (16) 

' (t) ( )b b bi e i  = − +               (17) 

' (t)b b br i r = −                (18) 

 

where we have the conditions 1.a a a a b b b bs e i r s e i r+ + + + + + + =  

 

2.3 Equilibrium points 

 

Equations (11)-(18) are the reduced equations. Equilibrium points are obtained by setting the right 

hand side of equation (11)-(18) to zero. Then we have two equilibriums: 

i) The disease-free steady state: 

* 0* 0* 0* 0* 0* 0* 0* 0*( , , , , , , , ) ,0,0,0, ,0,0,0
( )

a a a a b b b bT s e i r s e i r


    

  
= =  

+ + 
 

when 0 1.R   

ii) Endemic steady state: 
* 1* 1* 1* 1* 1* 1* 1* 1*( , , , , , , , )a a a a b b b bQ s e i r s e i r=  

where               1*

1

( )( )
,a

h

s
N

     

 

+ + + +
=  

 

1* 1

1

( )( )( )
,

( )

h

a

h

N
e

N

         

    

 − + + + + +
=

+ +
 

1*

1

( )
,

( )( )
a

h

i
N

  

      

 +
= −

+ + + +
 

1*

1

,
( )( )( )

a

h

r
N

 

        


= −

+ + + + +
 

1*

2

( )( )
,b

h

s
N

   

 

+ +
=  

2

1* 2

2

( ( )( )) ( )( )
,

( )( )

h

b

h

N
e

N

            

     

− + + − + +
=

+ +
 

1*

2

,
( )( )( )

b

h

i
N

 

      


= −

+ + +
 

1*

2( )( )( )
b

h

r
N

 

       


= −

+ + +
 

when 0 1.R   

 

2.4 Basic reproductive number 
 

The basic reproductive number ( 0R ) is calculated by the next-generation matrix [20, 21]. We can 

write the right-hand side of equations (11)-(18) as F and .V  Then we have gains and losses: 
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1

2

: : ( )

: : ( )0
, .

: : ( )

: : ( )0

a a ah a a

a a a a

b b bh b b

b b b b

Gains toe Losses frome eN s i

Gains toi Losses fromi e i

Gains to e Losses from e eN s i

Gains to i Losses from i e i

  

   

 

  

+ +

− + + +

+

− + +

 

Where F is the Jacobian matrix of the gains matrix and V is the Jacobian matrix of the losses 

matrix, 

                   

1

2

0 0 0

0 0 0 0

0 0 0

0 0 0 0

h a

h b

N s

F
N s





 
 
 =
 
 
 

,    

0 0 0

0 0
.

0 0 0

0 0

V

  

   

 

  

+ + 
 

− + +
 =
 +
 

− + 

 

When the disease-free steady state is 

* 0* 0* 0* 0* 0* 0* 0* 0*( , , , , , , , ) ,0,0,0, ,0,0,0
( )

a a a a b b b bT s e i r s e i r


    

  
= =  

+ + 
  and substitute *T in F

and V above and determine 1H FV −= , we have 

( )
( )( )( )( ) ( )( )

( )( ) ( )( )

2

1 1

2 2

0 0

0 0 0 0

0 0
( )

0 0 0 0

h h

h h

N N

H
N N

   

              

   

           

  + 
 

+ + + + + + + + + 
 
 =
  
 

+ + + + + 
 
 

0R is the eigenvalues of the matrix 1.H FV −=  

We have 
( )( )( ) ( )( )( )

1 2
0 max , .h hN N

R
   

              

   
=  

+ + + + + + + +  
                       (19)  

 

2.5 Global stability of the equilibrium states 
 

Theorem 1. If 0 1,R  then the disease-free equilibrium point 

* 0* 0* 0* 0* 0* 0* 0* 0*( , , , , , , , ) ,0,0,0, ,0,0,0
( )

a a a a b b b bT s e i r s e i r


    

  
= =  

+ + 
of equations (11)-(18) is 

globally asymptotically stable in the . We assume that

 

                                    

1 0*

2 0*

( )

.

( )( )

h a

h b

a a a a

N s

N s

s e i r

 





 

+
=




=

 = + + + +



            (20) 

Proof. We consider the Lyapunov function 
0* 0*L(t) ( ln ) ( ln )a a a a a a b b b b b bs s s e i r s s s e i r= − + + + + − + + +
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From equation (20), we have 
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And we have assumed that ( )( ),a a a as e i r   = + + + + thus 
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So, 
' (t) 0L  .Using LaSalle’s extension to Lyapunov’s method [22], if and only if 0* s ,a as =
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Proof We consider the Lyapunov function: 
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Substituting the relations in equations (22), we have 
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Hence, the condition (23) show that 
' (t) 0K  of all terms. Then the equilibrium steady state 

* 1* 1* 1* 1* 1* 1* 1* 1*( , , , , , , , )a a a a b b b bQ s e i r s e i r=  is globally asymptotically stable in the .  

 

 

3. Results and Discussion 

 
In this section, we simulate the dynamic behavior of HFMD in Thailand by numerically solving 

the equations (11)-(18),where thevalues of the parameter values are listed in Table 2. 

 
Table 2. Values of the parameter of our HFMD model 

 

 

Parameter       The disease-free           Endemic (case 1)          Endemic (case 2)      Reference 


                    

1/ (75*365)
                  

1/ (74*365)
                 

1/ (74*365)             [14] 

1                     0.00045                         0.0329                           0.045                       Assumption 

                      1 / 5                                 1 / 5                                 1 / 5                          [14],[23] 

                      1 /14                               1 /14                              1 /14                        [2],[23] 

                     0.0002
                          

0.0002
                         

0.0002                     [2] 

2                    0.005                             0.0492                           0.058                      Assumption 


                    

1/ (75*365)
                   

1/ (70*365)
                 

1/ (70*365)            [14] 

hN                   10                                   100                                300                         Estimated 

0R
                   

0.591481                       54.4523                         192.575  
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Figure 3. Solutions to the fractional of the global stability of 
*T from equations (11)-(18) when 

𝑅0 = 0.591481 
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Figure 4. Solutions to the fractional of the global stability of 
*Q from equations (11)-(18) when 

𝑅0 = 54.4523
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Figure 5. Solutions to the fractional of the global stability of 
*Q from equations (11)-(18) when  

R0 = 192.575 
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Figure 6. Solutions to the fractional projected onto the 2D of the global stability of 
*Q from 

equations (11)-(18) when 𝑅0 = 54.4523
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Figure 7. Solutions to the fractional projected onto the 3D of the global stability of 
*Q from 

equations (11)-(18) when 𝑅0 = 54.4523
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4. Conclusions 
 

In this research, we have studied a transmission model of Hand-Foot-Mouth disease (HFMD) by 

creating the mathematical model of HFMD according to the data of the disease. We distributed 

human population into two groups; the first group is the children of ages between 0-10 years and 

the second group is people who are older than 10 years.  Each age group is divided into four 

subclasses; susceptible, exposed, infected and recovered. From HFMD model, we assume the 

number of human population is constant. We establish 2 equilibrium states: a disease-free 

equilibrium state and endemic equilibrium state. The basic reproductive number 0( )R is 

determined using the next generation method and is denoted 0 .R  as 

( )( )( ) ( )( )( )
1 2

0 max , .h hN N
R

   

              

  
=  

+ + + + + + + +  
 

 

When 0 1,R  the disease-free steady state is globally asymptotically stable as can be seen in 

theorem 1 and when 0 1,R   the endemic steady state is globally asymptotically stable as can be 

seen in theorem 2. Since Hand-Foot-Mouth Disease is often found in children, we created 

mathematical model and divided into two groups for the analysis of the disease of each population 

group. Moreover, our analysis for parameters revealed parameters that affected the outbreak which 

are the infection rate for human population when the ages are between 0-10 years, the infection 

rate of a child above the age of 10 years and total human population. The results of this study can 

suggest ways for reducing the outbreak of this disease. If the importance of the disease is not 

realized and action taken, outbreaks will continue to occur. 
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