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Abstract 
 

Multi-task autonomous driving is a research hotspot in autonomous 
driving. However, existing research has only achieved single-task or 
dual-task autonomous driving. Therefore, we propose two novel 
multi-task approaches: a multi-task shared model mode (MTS) and a 
multi-object dual-model mode (MOD). In addition, existing neural 
network architectures are underperforming in multi-task autonomous 
driving, so we propose a novel neural network architecture - MT-
ResNet26. Moreover, to alleviate the problem of noise and class 
imbalance from data, we propose a new loss function - Stable Loss 
(ST Loss). Finally, our smart car can achieve multi-task road tracking, 
left-right turn sign recognition, automatic obstacle avoidance, stop, 
real-time acceleration and deceleration. In addition, we compare the 
existing multi-task autonomous driving model YS-VGG17_MSE, 
which shows our MT-ResNet26_ST is superior in loss value and 
actual performance. Meanwhile, we use our proposed approaches to 
train two classical neural networks—ResNet18_MSE* and 
DenseNet121_MSE*, so that they also achieve multi-task autonomous 
driving with our proposed approaches, showing the applicability of 
MTS and MOD. Furthermore, we compare MT-ResNet26_MSE with 
MT-ResNet26_ST, and the results show that the model using our 
novel ST Loss outperforms the model using the original loss function 
MSE. To sum up, it is shown that the performance of multi-task 
autonomous driving can be achieved and improved using our proposed 
neural network architecture and loss function. Furthermore, we 
propose optimized multi-task modes. OMTS and OMOD optimize and 
accelerate the models using semi-precision techniques based on the 
TensorRT. The results show that the optimized multi-task autonomous 
driving accuracy has been further improved. 
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1. Introduction 
 
Autonomous driving is an essential part of current artificial intelligence, and making autonomous 
cars achieve multi-tasks is a current hotspot. More and more research on autonomous driving has 
been conducted in recent years. Most of the existing research uses toy cars as research subjects. For 
example, Hossain et al. [1] used toy cars for experiments. However, because it was a toy car, there 
were reproduction errors such as speed deviation during turning which would occur in each 
experiment. The reason why the toy car could not perfectly replicate real cars due to the lack of 
many accessories such as gears (that would be found in real cars). Therefore, this research uses a 
scale model car, which can simulate the car to a greater extent and minimize reproduction error, 
thereby reducing the error in the experiment. 

Moreover, humans usually use only sight and hearing to drive cars, but most research today 
often installs many sensors to allow multi-tasking by autonomous cars. For example, Yılmaz and 
Tarıyan [2] installed infrared sensors, ultrasonic sensors, and other components on the smart car. 
Iqbal et al. [3] added infrared and ultrasonic sensors into the car. Their car could detect lanes, 
overtake other vehicles, avoid obstacles, and identify traffic lights. Banerjee et al. [4] installed a 
radar sensor to prevent the collision between the smart car and the obstacle. The radar sensor 
detected the distance between the vehicle and the obstacle. Therefore, designing a smart car with 
fewer sensors to achieve more tasks is particularly important for mimicking the human brain. This 
article proposes a smart car that only uses one camera to achieve all tasks, and puts more effort into 
the design of neural networks, loss functions, and approaches to achieve multi-tasking. 

Furthermore, in the existing research, many cars are still non-independent units. The cars 
cannot complete deep learning or reinforcement learning tasks independently, and need to be hooked 
up to a computer, making artificial intelligence not sufficiently independent. For example, 
Yuenyong and Qu [5] used Arduino as the motherboard of the car to complete reinforcement 
learning tasks. Arduino was unable to handle many computing problems, requiring a computer to 
be connected through Bluetooth as a back-end device. The Arduino smart car itself could not achieve 
the task independently. To make the car an independent unit, in this work, we used Jetson Nano as 
the motherboard to support a smart car that can achieve all tasks independently. 

In deep learning, neural networks are essential, and the structure of neural networks 
determines the quality of the research. Many neural networks have been proposed in the existing 
research. For example, Rausch et al. [6] proposed a complex convolutional neural network that 
consisted of three convolutional layers, two pooling layers, and a fully connected layer. The 
convolutional layer was used to extract the features of the track, the pooling layer was used to scale 
the extracted feature information, and the final layer used the steering angle as an output. The trained 
neural network maps the pixel data from the camera directly to the steering commands for the road 
tracking task. Similarly, Bechtel et al. [7] further deepened the neural network by proposing a 
convolutional neural network consisting of five convolutional layers and four fully connected layers. 
They finally applied the network to their smart car, which used the predicted steering angle values 
as the output to achieve road tracking. 

However, the neural networks used by Rausch et al. [6] and Bechtel et al. [7] did not enable 
multi-task autonomous driving because their neural networks were too simple, and these shallow 
neural networks were not stable and accurate enough to be trained using only a small amount of 
data. We need deeper and more efficient networks to improve the training accuracy and achieve 
more tasks. However, the amount of data required for deep neural networks increases exponentially, 
and the complexity of the model increases significantly, both of which are not good for training and 
applying the model. Therefore, we proposed a novel neural network architecture, which we call 
multi-task-ResNet26 (MT-ResNet26), which can make a massive amount of data unnecessary while 
still allowing the car to complete various tasks with high accuracy. 
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Meyer and Thakurdesai [8] modified the KL Divergence loss function to build a new model 
between the prediction and label distribution by minimizing the relative entropy, which could 
disperse the relative entropy results, prevent overfitting the potential noisy labels, improve 
prediction distribution, and thus improve the target detection performance, thereby solving the 
problem caused by sensor noise and inaccurate target detection caused by incomplete data. Ren et 
al. [9] proposed a method for prediction using occupancy maps to solve the vehicle motion 
prediction problem. They proposed three new loss functions to construct a secure model for 
prediction. Two of these loss functions were modified based on the Sigmoid loss function to predict 
trajectories. The third loss function is adjusted based on the MSE loss function and was used to 
optimize the prediction of unseen vehicles. This approach predicted the earliest time a location 
within a specified range could be occupied by visible and invisible vehicles. 

However, the loss functions of Meyer and Thakurdesai [8] and Ren et al. [9] could only 
solve specific problems and were not general. Furthermore, these loss functions solved only one 
task. When an AI agent achieves multiple tasks, it is often affected by noise and class imbalance 
problems in multi-tasks. Therefore, we proposed a new and more applicable loss function to reduce 
such problems, which we named Stable Loss Function (ST Loss). 

In our research of multi-task autonomous driving, we divided the current research into 
single-task autonomous driving and multi-task autonomous driving. Most of the existing research is 
on single-task autonomous driving. For example, to achieve the task of road tracking, Do et al. [10] 
proposed an autonomous driving car model trained on a Raspberry Pi. The smart car could 
satisfactorily complete the task of road tracking. Al-Nima et al. [11] proposed a new neural network 
based on deep reinforcement learning, DRL-RT. It collected input states from the advancing car 
view and produced appropriate road-tracking actions. Ultimately, their methods made the car keep 
track on the roads in different weather environments. However, their approaches could not make the 
smart car achieve the object detection task. 

Further research gradually combined detection tasks with road tracking to enable smart 
cars to achieve more tasks in autonomous driving. Kulkarni et al. [12] utilized the InceptionV2 
model to recognize and detect traffic lights. Yang et al. [13] proposed a pedestrian detection and 
vehicle detection algorithm based on YOLOv2 optimized feature extraction to achieve efficient 
pedestrian detection and vehicle detection at the same time when the car was driving.  

Fang et al. [14] also combined the detection and tracking of road signs. They divided 
detection and tracking into two phases. They developed two neural networks to extract the color and 
shape features of traffic signs from input scene images in the detection phase. In the tracking stage, 
a Kalman filter was used to track the traffic signs located in the previous step through an image 
sequence. The method performed well in object detection and road sign tracking.  

However, most of the research could not perform a critical task in automatic driving - 
automatic obstacle avoidance. Many researchers gradually added automatic obstacle avoidance into 
the tasks of the smart car. Mitsch et al. [15] proposed a hybrid system model and theorem proving 
technique to achieve automatic obstacle avoidance of stationary and moving obstacles. Also, Kang 
et al. [16] researched automatic obstacle avoidance technology, and they established a behavior-
friendly strategy for autonomous vehicles based on vehicle dynamics through Q-learning. In this 
case, the car learned by itself through repeated events. Finally, the autonomous car could smoothly 
avoid obstacles. Still, they could not make the car achieve the acceleration and deceleration task. 

 Their methods mainly performed single-task or dual-tasks and could not achieve multi-
tasks. Therefore, this research proposes two approaches to facilitate multi-tasks. We call the first 
approach multi-task shared mode (MTS), the second approach we call the multi-object dual-model 
mode (MOD). 

We used an embedded device, Jetson Nano, to deploy MTS and MOD to achieve multi-
tasks. Because embedded devices are not built to accomplish computationally intensive devices, 
they often have relatively low inference speeds when deploying deep learning models, leading to 



 
Curr. Appl. Sci. Technol. Vol. 23 No. 3                   Z. Nie and J. Qu  
   

 

4 

problems such as latency and increased power consumption [17]. Ding and Qu [18] had problems 
with model response time delays when deploying autonomous driving models due to resource 
constraints in embedded devices, and performed experiments with poor performance. Since the 
MTS and MOD modes perform multiple tasks while autonomous driving, the inference speed of the 
autonomous driving model is much lower than that of the single-task autonomous driving model. 
Therefore, we optimized our autonomous driving model using semi-precision technology (FP16) 
based on an TensorRT framework, and integrate it with multi-task mode. We thus propose a novel 
optimized multi-task mode, which we refer to as optimized MTS (OMTS) and optimized MOD 
(OMOD). OMTS and OMOD speed up the inference and computation of the autonomous driving 
model with good real-time performance to further improve the performance of the autonomous 
driving smart car to achieve multi-tasks. 

In summary, in this research, we built a scale model car with only one camera as a sensor 
and used a Jetson Nano motherboard, making the car a stand-alone unit. To enable the smart car to 
integrate multi-tasks into one AI, we proposed a novel neural network architecture - MT-ResNet26. 
Moreover, we proposed two approaches to make the smart car complete multi-task functional. 
Furthermore, we created a new loss function - ST Loss to reduce the effect of class imbalance and 
excessive noise caused by the multi-task function, increasing the robustness of the model and 
enabling the smart car to smoothly complete multi-tasks. In addition, we proposed optimized multi-
task modes to alleviate the delay problem of the smart car in achieving multi-task functionality and 
improve the stability of multi-tasking. 
 
 
2. Materials and Methods 
 
2.1 Construction of the autonomous driving smart car 
 
The smart car built in this research was different from the toy cars often used in past research. We 
use a scale model car, which could more accurately imitate real cars—and used a Jetson Nano 
motherboard that made the car a stand-alone agent.  

The hardware framework of the Jetson Nano smart car is shown in Figure 1. The smart car 
used a 2200mAh battery pack as a power supply, and only used a camera as an input source, which 
transmitted data to the Jetson Nano for processing. The Jetson Nano was equipped with a driver 
board, which can transmit the processing signals of the Jetson Nano to the motor for control of the 
smart car. 

 
2.2 Self-made neural network architecture--MT-ResNet-26 
 
Different neural network architectures produce different effects depending on the experimental 
requirements. A deep neural network means better nonlinear expression ability in computer vision. 
It can fit more complex feature input. Moreover, as the number of network layers increases, the 
layer-by-layer feature learning ability is enhanced. However, the deep network also has problems 
such as gradient instability and network degradation, which lead to the decline of the learning ability 
of some shallow layers. As the depth of the neural network increases, the amount of data required 
to train the model increases exponentially. However, shallow neural networks cannot achieve multi-
task accuracy. 

Therefore, we proposed a novel neural network architecture, MT-ResNet26, for multi-
tasking. We added several convolutional layers based on ResNet neural network architecture to 
increase the generalization ability of the neural network. At the same time, to speed up the training  
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(a) (b) 
 

Figure 1. (a) Jetson Nano smart car hardware framework, (b) Autonomous driving smart car 
overview 

 
and convergence speed of the neural network and prevent overfitting during training, we added a 
BN layer after each convolutional layer. 

Figure 2 shows the neural network architecture of MT-ResNet26, which has 24 
convolutional layers, 26 BN layers, 1 maximum pooling layer, 1 average pool layer, and 1 FC layer. 

The neural network we built can ensure the accuracy of the model. Moreover, to achieve 
multi-task function, the robustness of the model also needs to be stable, and the loss function is the 
critical factor affecting the robustness of the model; we therefore proposed a new loss function. 
 
2.3 Our loss function-stable loss 
 
In deep learning, loss functions are used to measure the performance of a model in predicting the 
desired outcome. Generally speaking, the larger the loss value, the worse the trained model will be. 
According to the different learning tasks, the loss function can be divided into regression loss and 
classification loss. Regression loss deals with the prediction problem of continuous values, and the 
autonomous driving problem belongs to the regression problem. We combined several regression 
loss functions in proposing a novel loss function - the stable loss function. ST Loss has good 
robustness and effectiveness that can alleviate the problems of noise and class imbalance. 

The most widely used regression loss functions are MAE, MSE [19], and Smooth L1 loss 
function [20]. ST Loss combines their advantages to make the smart car achieve multi-tasking. 
Figure 3 shows the loss function diagram. 
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Figure 2. Network architecture diagram of MT-ResNet26 
 
 

 
 

Figure 3. ST Loss, MSE, MAE, and Smooth L1 loss functions 
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From Figure 3, we can see the advantages of MSE. MSE is very sensitive to data, and is 
thus conducive to gradient update and function convergence. However, MSE is also easily affected 
by the error value, resulting in model accuracy degradation. The MAE loss function was proposed 
to solve this problem. 

Because the MAE loss function is an absolute value, MAE does not reduce the accuracy of 
the model even if outliers corrupt the training data. However, MAE is continuous but not 
differentiable at y - f(x) = 0, so it is more difficult to solve for the differentiation. Furthermore, the 
gradient of MAE always remains the same, which makes MAE unable to handle minimal loss values. 

Smooth L1 combines the MAE and MSE loss functions by adding the parameter δ, but 
Smooth L1 is a piecewise function, which leads to its continuous non-differentiable property. 
Moreover, Smooth L1 is needed to train the hyperparameter δ. Thus, this process needs to be iterated 
continuously. 

To solve the shortcomings of these loss functions and achieve multi-tasks, we proposed ST 
Loss and set three hyperparameters for ST Loss to change its robustness, thereby improving the 
model performance. 

The general form of ST Loss is as follows: 
 

𝑓𝑓(𝑥𝑥) = |𝛼𝛼−2|
𝛾𝛾

(𝑥𝑥2)
1
𝛼𝛼 + 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝛽𝛽

𝛾𝛾
𝑥𝑥 − 1                                       (1) 

 
Among these terms, 𝛼𝛼，𝛽𝛽，𝛾𝛾 are hyperparameters, and γ can be regarded as a scale 

parameter, which controls the bending scale of ST Loss in the neighborhood of x=0. The robustness 
of ST Loss is adjusted by  |𝛼𝛼−2|

𝛾𝛾
  and 𝛽𝛽

𝛾𝛾
, which can make ST Loss more robust. The trained model 

has high precision, which can reduce the effects of noise and class imbalance, thereby making the 
smart car able to achieve multi-tasking. 

Since α acts as a hyperparameter, we can see that the loss function has a similar form for 
different values of 𝛼𝛼. When 𝛼𝛼 → 2，𝛾𝛾 → 𝛼𝛼，𝛽𝛽=0, SL Loss→→ 0.5√𝑥𝑥2, which is approximate to 
MAE, when 𝛼𝛼 = 1， 𝛽𝛽=0, SL Loss=1

𝛾𝛾
𝑥𝑥2, approximate at MSE. 

From 𝛼𝛼 = 2 to 𝛼𝛼 = 1, ST Loss smoothly transitions from MAE loss to MSE loss, so we can 
reduce the shortcomings of MAE and MSE for outliers and noise points by adjusting those three 
hyperparameters and enhancing the robustness of ST Loss. At the same time, ST Loss is different 
from Smooth L1. It is not a piecewise function and has continuous differentiability. Every point on 
the function has a specific value, making ST Loss highly precise. 

We can draw the following inferences about ST Loss through continuous experimentation 
with three hyperparameters. 

When  𝛼𝛼，𝛽𝛽，𝛾𝛾> 0, the image of ST Loss is smooth and suitable for gradient-based 
optimization; due to the continuous derivability of ST Loss, when x=0, ST Loss is still meaningful; 
with the decrease of |𝛼𝛼−2|

𝛾𝛾
 and 𝛽𝛽

𝛾𝛾
 on (0, 1) and 𝛼𝛼 approaching 1, the curve of ST Loss gradually 

becomes smooth, and the robustness of ST Loss gradually increases; the closer the curve of ST Loss 
is to 0, the more the neural network is more prone to overfitting. Through experiments and 
demonstrations, we finally obtained three hyperparameters, which were in order: 𝛼𝛼 = 1，𝛽𝛽 = 2，
𝛾𝛾 = 10. 

The final ST Loss equation is as follows: 
 

𝑓𝑓(𝑥𝑥) = 0.1𝑥𝑥2 + cosh 0.5𝑥𝑥 − 1                                          (2) 
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ST Loss inherits the characteristics of MSE, which is more sensitive to data, but at the same 
time is more robust to outliers, which enables ST Loss to effectively deal with the noise problem 
caused by multi-tasks and the imbalance class problem, which are in turn caused by multi-task 
datasets. 
 
2.4 Approaches for multi-task autonomous driving 
 
Road tracking, automatic obstacle avoidance, traffic sign recognition, and acceleration and 
deceleration are essential tasks in autonomous driving. Most of the current research is single-task or 
dual-task autonomous driving, which are insufficient for applying to real autonomous driving. The 
MT-ResNet26 and ST Loss proposed in this article enable the smart car to achieve multi-task driving.  

The first approach is called the multi-task shared model mode (MTS). The MTS mode 
enables the smart car to simultaneously achieve three tasks: road tracking, automatic obstacle 
avoidance, and left-right turn sign recognition. MTS mode allows multiple tasks to share the same 
neural network (MT-ResNet26) and achieve different tasks at the output of the network. 

The second approach is called multi-object dual-model mode (MOD). The MOD mode 
enables the smart car to achieve road tracking and multi-object detection tasks. We proposed a dual-
model architecture to build the MOD mode. In this case, different tasks use different neural networks, 
by which MT-ResNet26 achieves the road tracking task, ssd_mobilenet_V2 achieves the multi-
object detection task. After recognizing the target object, the smart car will perform different actions 
according to the different targets. For example, when a stop sign is recognized, the smart car will 
stop driving. Moreover, two target objects: A and B are set in this research. When target A is 
detected, the smart car will accelerate, and the smart car will decelerate when target B is detected. 

A general architecture diagram of the multi-tasks proposed in this article is shown in                
Figure 4. 

 
2.4.1 MTS mode 
 
An architecture diagram of MTS mode is shown in Figure 5. The feature of MTS mode is that 
different tasks share the same neural network: MT-ResNet26.  In the output of the neural network, 
the model uses a mapping relationship between the input picture and the output (speed gain and 
steering gain) to achieve different tasks. 

The three tasks of road tracking, automatic obstacle avoidance, and left-right turn sign 
recognition belong to the same mapping relationship, and they are closely related. The smart car 
will only achieve different tasks when encountering obstacles and road signs. By using the same 
neural network, the model can learn some standard abstract low-level features. At the same time, 
we designed unique image labels for learning higher features according to the characteristics of each 
task. Then, different tasks provided additional useful information to each other while preserving the 
task characteristics, making the model more robust. Therefore, the MTS mode can reduce noise and 
reduce the risk of overfitting. 

 
2.4.2 MOD mode 
 
The second approach we proposed to achieve multi-tasking was the MOD mode. The MOD mode 
has a looser connection constraint on multi-tasks. When different tasks cannot transfer useful 
information to each other, the MOD mode is better suited. For example, the data between the road 
tracking task and the object detection task are independent and do not affect each other. The MOD 
mode features different tasks using different networks. The architecture diagram of MOD mode is 
shown in Figure 6. 
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Figure 4. Multi-task architecture diagram 
 

The road tracking model achieves the road tracking task of the smart car. Since the two 
models in the dual-model mode affect each other and have more noise, we used MT-ResNet26 as 
the neural network and ST Loss as the loss function to train the road tracking model to ensure the 
robustness and accuracy of the model. 

The multi-object detection model is responsible for object detection, and the smart car 
recognizes different object targets to perform different actions. We used TensorFlow object 
detection API to train the ssd_mobilenet_v2 model on the coco dataset to construct an object 
detection model. 

Since two models need to be combined into one package simultaneously when constructing 
a dual-model architecture, the operational speed of the model is affected, and there will be a 
considerable delay in the actual operation of the smart car. Therefore, we used TensorRT to optimize 
ssd_mobilenet_v2 to reduce the latency of the model. 

In the MOD mode, when the input of the camera is the lane line, the road tracking model 
completes the road tracking task of the smart car; when the input of the camera is targets A and B 
or a stop sign, the multi-object detection model detects the target sand the smart car will achieve the 
task of accelerating, decelerating or stopping according to the corresponding target. 
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Figure 5. MTS mode architecture diagram 
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Figure 6. MOD mode architecture diagram 
 
2.5 Optimized MTS and optimized MOD 
 
The increase in the tasks performed by autonomous driving leads to a multiplication of the 
complexity and the size of the autonomous driving model, which increases the time required for the 
inference phase of the autonomous driving model. Thus, delays often occur in the MTS and MOD 
modes, seriously affecting the multi-task performance. To improve the performance of the MTS and 
MOD modes and to enhance their real-time performance, in this work we optimized the multi-task 
modes based on the TensorRT framework and semi-precision techniques, and thus proposed novel 
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optimized multi-task modes, which we refer to as optimized MTS (OMTS) and optimized MOD 
(OMOD), respectively. 

Our proposed optimized multi-task mode compresses, optimizes, and reconstructs the 
computational graph of the neural network through the TensorRT framework, thus speeding up the 
inference of the model and reducing the latency. Figure 7 shows the optimization approach of the 
optimized multi-task mode (OMTS and OMOD). Taking the optimization of our proposed MT-
ResNet26 network architecture as an example, firstly, the optimized multi-task mode eliminates 
some redundant layers to reduce the amount of data circulation and reduce the computation. 
Secondly, as shown in Figure7 (b), vertical fusion is performed on MT-ResNet26 by combining 
compatible layers consisting of convolutional, BN, and ReLU layers into a single CBR layer. 
Finally, horizontal fusion, i.e. similar layer merging, is performed on MT-ResNet26, as shown in 
Figure 7 (c), where twelve 3*3 CBR layers are fused into the same CBR layer. This optimization 
method can produce a highly compressed MT-ResNet26, which we call MT-ResNet26_TRT. 

In addition, the optimized multi-task mode uses a semi-precision technique (FP16) for low-
precision inference on the highly compressed MT-ResNet26_TRT, which significantly reduces the 
use of computational resources, speeds up the inference of the autonomous driving model, and 
mitigates latency conditions, thus improving the accuracy rate of multi-tasks autonomous driving. 
 

 
 

Figure 7. Optimization diagram of OMTS and OMOD 
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2.6 Experimental setup 
 
2.6.1 Simulation environment construction 
 
Most of the existing research uses a relatively simple circular track for experiments. However, we 
encounter various road conditions in real life, so relying only on a circular track cannot certainly 
replicate the “real use” of automatic driving. We need more complex and diverse road conditions. 
Therefore, we constructed different tracks according to different multi-tasks (MTS mode and MOD 
mode) as shown in Figure 8. 

On track (a), we achieved road tracking, automatic obstacle avoidance, and left-right turn 
sign recognition tasks. There were three left-right turning intersections on track (a). We set different 
driving routes according to different turning directions. The smart car drove on an untrained custom 
route to test the adaptability of the multi-task autonomous driving smart car in unseen environments. 
In Figure8 (a), the green model car is the smart car, the blue model car is an obstacle, and the blue 
turn sign at the corner is the left-right turn sign.  

On track (b), we achieved road tracking and multi-object detection tasks. To verify the 
accuracy of the model, we added several corners because on the corners, the output of the model 
(speed gain and steering gain) has a more significant impact on the smart car. In Figure 8 (b), the 
green model car was the smart car. The red mark was the stop target, the blue cone was the 
acceleration target, and the brown cylinder was the deceleration target.  

 

 
 

(a)                                                                          (b) 
 

Figure 8. (a) MTS Mode custom track, (b) MOD Mode custom track 
 

2.6.2 Data collection 
 
We used the smart car to collect data for the MTS mode and the MOD mode on track (a) and track 
(b), respectively. The size of the data image is 224*224. The MTS mode needed to achieve three 
different tasks. We collected the data in sequence according to the task classification, and divided 
the dataset into road tracking dataset 1, left-right turn sign recognition dataset, and automatic 
obstacle avoidance dataset. 

The MOD mode needed to collect datasets for MT-ResNet26 and ssd_mobilenet_v2. MT-
ResNet26, and was responsible for the road tracking task. We named the dataset of MT-ResNet26 
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as road tracking dataset 2. Ssd_mobilenet_v2 was responsible for multi-object detection tasks. We 
used TensorFlow object detection API to directly train the model using the coco dataset without 
collecting the dataset separately. We used "stop" as the stop target, target A (bottle) as the 
acceleration target, and target B (cup) as the deceleration target. 

Moreover, we only collected part of the images on the track for each task so that the smart 
car could operate in an unseen environment. The collection method is shown in the data collection 
route in Table 1. Details of the collected data are shown in Table 1. 
 
Table 1. Overview of data collection 

Mode MTS MOD 

Model MT-ResNet26 MT-
ResNet26 Ssd_mobilenet_v2 

Task Road 
tracking1 

Left-right 
turn sign 

recognition 

Automatic 
obstacle 

avoidance 

Road 
tracking2 Stop Accelerate Decelerate 

Camera 
field of 
view 

       

top view 

    

   

Number 1750 900 350 2000 Dataset from coco 

Data 
collection 

route 
   

    
 
2.6.3 Model training 
 
To train the autonomous driving model, we built the training environment in Jetson Nano, and Table 
2 shows our environment configuration information. 
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Table 2. Environment configuration 

Environment configuration 
Request TensorRT Pytorch CUDA CUDNN Jetpack 
Version 6.0.1.10 1.4.0 10.0.326 7.6.3.28 4.3 

 
To test the applicability of the neural network and loss function proposed in this research, 

we needed to use different neural networks and loss functions to train multi-task autonomous driving 
models and compared the results between them.  

We used the same hyperparameter setting scheme for all models to accurately test the 
improvement of our neural network and loss function on the model. Table 3 shows the 
hyperparameter settings. We used an embedded device as our motherboard with limited memory, 
so we chose the mini-batch size and mini-epoch for model training within the memory allowance of 
the Jetson Nano, with a batch size of 16 and epoch of 70. In addition, we chose the now very popular 
Adam as our optimizer because it is simple to use, computationally efficient, and has a small 
memory requirement [21]. 
 
Table 3. Hyperparameter setting 

Hyper-parameters 
Optimizer Batch Size Epoch 

Adam 16 70 
 
We trained two multi-task autonomous driving models with MT-ResNet26 as the neural 

network. We called these models MT-ResNet26_MSE and MT-ResNet26_ST; MT-ResNet26_MSE 
used the original loss function MSE, and MT-ResNet26_ST used the ST Loss proposed in this 
research. Through these two sets of models, we tested the improvement of ST Loss on autonomous 
driving.  

To better compare with existing autonomous driving methods, we trained the existing 
autonomous driving models. In the research of Suo et al. [22], they proposed a new neural network 
based on the VGG16 neural network and achieved the road tracking task. We trained their 
autonomous driving model and called it YS-VGG17_MSE. 

Furthermore, we used a multi-task approach as we proposed to train two existing classical 
models—ResNet18 proposed by He et al. [23] and DensNet121 proposed by Huang et al. [24], 
which we then referred to as ResNet18_MSE* and DenseNet12_MSE*, * representing the models 
using our proposed multi-task approach. Aside from testing the applicability and universality of the 
two approaches proposed in this research, this process also compared MT-ResNet26_MSE to test 
the multi-task improvement of MT-ResNet26. 
 
2.6.4 Model testing 
 
We loaded the MT-ResNet26_ST, MT-ResNet26_MSE, YS-VGG17_MSE, ResNet18_MSE*, and 
DenseNet12_MSE* models into the autonomous driving car for model testing. The model testing 
used two maps to test the performance of the multi-task autonomous driving model and the 
feasibility of the two multi-task approaches. The test track for MST mode is shown in Figure 9, and 
the test track for MOD is shown in Figure 10. 

We randomly set the track to better test the performance of autonomous driving smart car 
in unseen scenarios. 
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In the MTS mode track, we randomly placed the left-right turn signs at the left-right turns 
of the track and freely placed the obstacle positions. A total of four tracks were set, as shown in 
Figure 9. 
 

 
 

(a)                                                                            (b) 
 

 
 

(c)                                                                            (d) 
 

Figure 9. MST mode test track 
 

In the MOD mode track, we arbitrarily placed the target positions to set the track, as shown 
in Figure 10. 
 

 
 

Figure 10. MOD mode test track 
 

In addition, to further improve the multi-task performance of the smart car, we optimized 
the above autonomous driving models to obtain MT-ResNet26_ST_TRT, MT-
ResNet26_MSE_TRT, YS-VGG17_MSE_TRT, ResNet18_MSE*_TRT, and DenseNet12_MSE* 
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_TRT, respectively, and loaded these onto the autonomous driving smart car to test the optimization 
effects of the OMTS and OMOD modes on two sets of tracks. 
 
 
3. Results and Discussion 
 
3.1 Model evaluation loss value and variance 
 
A lot of research today uses the evaluation loss values to reflect the performance of the model [25, 
26], i.e. the smaller the loss value of the model, the better the model. In addition, the loss variance 
can represent the stability of the loss values of the model. Therefore, we trained the MT-
ResNet26_ST, MT-ResNet26_MSE, YS-VGG17_MSE, ResNet18_MSE* and DenseNet121_ 
MSE* models five times, and recorded their loss values and loss variances, respectively. The loss 
values and variances of the models are shown in Table 4. 
 
Table 4. Model evaluation loss value and variance 

MTS MOD 

Model Loss AVG 
Loss 

Variance 
of Loss Model Loss AVG 

Loss 
Variance 
of Loss 

ResNet-
18_MSE* 

0.004677 

0.004648 1.00E-08 ResNet-
18_MSE* 

0.005505 

0.005557 5.97E-09 
0.004553 0.005435 
0.004798 0.005603 
0.004691 0.005651 
0.004522 0.005593 

DenseNet-
121_MSE* 

0.005423 

0.005548 1.34E-08 DenseNet-
121_MSE* 

0.005240 

0.005417 1.95E-08 
0.005688 0.005660 
0.005435 0.005343 
0.005512 0.005451 
0.005681 0.005391 

YS-
VGG17_M

SE 

0.007157 

0.00736 1.77E-08 
YS-

VGG17_M
SE 

0.004962 

0.005691 3.67E-07 
0.007356 0.005396 
0.007436 0.005402 
0.007553 0.005978 
0.007296 0.006715 

MT-
ResNet26_

MSE 

0.004565 

0.004511 3.99E-09 
MT-

ResNet26_
MSE 

0.003871 

0.003798 2.76E-09 
0.004421 0.003707 
0.004581 0.003804 
0.004453 0.003811 
0.004537 0.003795 

MT-
ResNet26_

ST 

0.000674 

0.000685 3.07E-10 
MT-

ResNet26_
ST 

0.000510 

0.000547 5.63E-10 
0.000718 0.000561 
0.000684 0.000578 
0.000679 0.000553 
0.000668 0.000531 

* Represent the model using our proposed multi-task approach 
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As shown in Table 4, ResNet-18_MSE*, DenseNet-121_MSE*, YS-VGG17_MSE, and 
MT-ResNet26_MSE models were trained with the same loss function but with different neural 
networks. By comparing the above four groups of models, it can be seen that MT-ResNet improved 
the model. In MTS mode, MT-ResNet26_MSE had the lowest average loss of 0.004511, and YS-
VGG17_MSE had the highest average loss of 0.00736. In MOD mode, MT-ResNet26_MSE also 
had the lowest average loss of 0.003798, and YS-VGG17_MSE had the highest average loss of 
0.005691. Furthermore, MT-ResNet26_MSE and MT-ResNet26_ST use different loss functions. 
By comparing these two models, the evaluation loss value of the model trained with ST Loss was 
significantly reduced. MT-ResNet26_ST had the lowest average losses, 0.000685 and 0.000547, in 
the MTS and MOD modes, respectively. In summary, it is apparent that the proposed neural network 
and loss function effectively reduced the evaluation loss value of model training. 

In addition, as seen in Table 4, the variance of all the autonomous driving models was 
extremely low, and the loss variance of MT-ResNet26_ST was the lowest and most stable. 
 
3.2 Actual performance of multi-task autonomous driving 
 
In the MTS mode test, we divided multi-task autonomous driving into three tasks: road tracking 
(task I), obstacle avoidance (task II), and left-right turn sign recognition (task III). To judge the 
performance of the model, we set the total score of multi-tasks autonomous driving as 100 points, 
with task I accounting for 30 points and task II and task III each accounting for 35 points. If the 
smart car achieved the corresponding task during the experiment, it got the corresponding score. 
Points were deducted if mistakes were made during the experiment. Each time the smart car touched 
the white line, each time 1 point was deducted from the total score of task I. Each time the smart car 
could not avoid obstacles, each time 2 points were deducted from the total score of task II; each time 
the smart car did not recognize the of turn left and right sign, two points were deducted from the 
total score of task III. 

In the MOD mode test, we divided multi-task autonomous driving into three tasks: road 
tracking (task I), acceleration and deceleration (task II), and stopping (task III). Score settings were 
the same as for MTS mode. Each time the smart car touched the white line during the experiment, 
1 point was deducted from the total score of task I. Each time the smart car could not stop, accelerate 
or decelerate, 2 points were deducted from the total scores of task II and task III, respectively. 

In order to evaluate the performance of various multi-task autonomous driving models 
more clearly, we introduced the concept of a perfect score, which indicated that the autonomous 
driving car achieved all tasks without touching the white line, and we proposed the concept of 
accuracy rate, which referred to the degree of accuracy with which the multi-task autonomous 
driving model can achieve multi-tasks. We defined it as: 

 
                                                      𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑠𝑠𝑎𝑎𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠
× 100%                                           (3) 

 
We completed three laps of multi-task autonomous driving on the track. The final score 

and the accuracy rate were judgements of the performance of multi-task autonomous driving. The 
final score and the accuracy rate of different multi-task autonomous driving models are shown in 
Table 5 and Figure 11. 

 The experiment videos can be viewed at this URL: https://github.com/MTAD1/ 
Experimental-video 
 
 
 
 

https://github.com/MTAD1/
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Table 5. Multi-task autonomous driving model scores 

MTS 
  Model Task I Task II Task III Total Score 

Layout(a) 

ResNet-18_MSE* 24 31 29 84 
DenseNet-121_MSE* 27 29 29 85 

YS-VGG17_MSE 26 0 0 26 
MT-ResNet26_MSE 28 27 31 86 
MT-ResNet26_ST 29 31 31 91 

Layout(b) 

ResNet-18_MSE* 21 27 31 79 
DenseNet-121_MSE* 22 31 25 78 

YS-VGG17_MSE 20 0 0 20 
MT-ResNet26_MSE 24 29 27 80 
MT-ResNet26_ST 24 31 27 82 

Layout(c) 

ResNet-18_MSE*  24 27 31 82 
DenseNet-121_MSE* 26 31 23 80 

YS-VGG17_MSE 25 0 0 25 
MT-ResNet26_MSE 24 31 29 84 
MT-ResNet26_ST 27 31 31 89 

Layout(d) 

ResNet-18_MSE* 26 27 25 78 

DenseNet-121_MSE* 24 29 25 78 
YS-VGG17_MSE 20 0 0 20 

MT-ResNet26_MSE 22 35 27 84 
MT-ResNet26_ST 26 33 27 86 

MOD 
  Model Task I Task II Task III Total Score 

Layout 

ResNet-18_MSE* 15 19 29 63 

DenseNet-121_MSE* 18 21 31 70 
YS-VGG17_MSE 20 0 0 20 

MT-ResNet26_MSE 21 25 31 77 
MT-ResNet26_ST 24 29 33 86 
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Figure 11. Accuracy rate of multi-task autonomous driving models 
 

For the actual operational effectiveness of the multi-task autonomous driving smart car, we 
scored the performance of different multi-task autonomous driving models to evaluate the 
performance of different models under multi-task scenario and the results are shown in Table 5 and 
Figure 11. Because the YS-VGG17_MSE proposed by Suo et al. [22] could only manage the road 
tracking task, the YS-VGG17_MSE model has the lowest scores and accuracy rate in both MTS and 
MOD modes. ResNet-18_MSE*, DenseNet-121_MSE* achieve multi-tasking after using the 
method proposed in this research, but the neural network and loss function used were not accurate 
and robust, and the sores and accuracy rate were lower than MT-ResNet26_MSE and MT- 
ResNet26_ST. After training the model with MT-ResNet26, the sores and accuracy rate of MT-
ResNet26_MSE significantly improved, but were still lower than that of MT-ResNet26_ST with ST 
Loss. Finally, the sores and accuracy rate of MT-ResNet26_ST were the highest in both MTS and 
MOD modes. 

When combining the model evaluation loss value and the actual operation of the smart car, 
our proposed MT-ResNet26_ST model achieved multi-task autonomous driving better, which 
shows that MT-ResNet26 and ST Loss can effectively improve model training and multi-task 
performance. At the same time, MT-ResNet26_ST achieved multi-task autonomous driving in an 
unseen environment, which shows that MT-ResNet26 and ST Loss enhanced the robustness of the 
model and reduced interference due to noise from the data. Furthermore, our proposed multi-task 
approaches can be applied to different models, enabling them to achieve multi-task autonomous 
driving, which shows the generality of our proposed approaches. 
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3.3 Testing of the optimized multi-task mode (OMTS and OMOD) 
 
To solve the problems of slow model inference and delay caused by embedded devices, we proposed 
an optimized multi-task mode approach to optimize the autonomous driving model using semi-
precision techniques through the TensorRT framework. We tested the inference speed of different 
autonomous driving models before and after optimization using datasets collected in MTS mode 
(3000 images) and MOD mode (2000 images), respectively. The inference speeds of the 
autonomous driving models in OMTS mode and OMOD mode are shown in Table 6. 
 
Table 6. The inference speeds of different autonomous driving models before and after optimization 

 OMTS 
Model Pytorch(s) TensorRT(s) Optimized speed / Original speed(x) 

ResNet-18_MSE* 0.043622 0.005933 7.3524 
DenseNet-121_MSE* 0.107876 0.027502 3.9224 

YS-VGG17_MSE 0.040207 0.008584 4.6839 
MT-ResNet26_MSE 0.032854 0.002548 12.894 

MT-ResNet26_ST 0.028271 0.002192 12.8973 

 OMOD 

Model Pytorch(s) TensorRT(s) Optimized speed / Original speed(x) 
ResNet-18_MSE* 0.037718 0.004526 8.3336 

DenseNet-121_MSE* 0.104753 0.027442 3.8172 

YS-VGG17_MSE 0.03139 0.00635 4.9433 

MT-ResNet26_MSE 0.030146 0.002284 13.1987 

MT-ResNet26_ST 0.0271 0.001964 13.7962 

 
From Table 6, it can be seen that the different autonomous driving models were optimized 

(FP16) with considerable improvement in the inference speed. Among them, the autonomous 
driving models using DenseNet-121 and YS-VGG17 as neural networks had the slightest 
improvements in OMTS and OMOD modes, with only a 3-4 times improvement in inference speed. 
In contrast, the autonomous driving models using MT-ResNet26 showed the most significant 
improvement. The model inference speed was improved by more than ten times. In addition, the 
models using ST Loss as the loss function had more considerable improvement than the MSE loss 
function. Furthermore, MT-ResNet26_ST had the fastest inference speeds of 0.002192 s and 
0.00194 s. This indicates that the autonomous driving models trained using our proposed MT-
ResNet26 and ST Loss had a huge optimizable space and the best performance to achieve multi-
tasks. We loaded all optimized autonomous driving models onto the smart car to verify our theory 
for multi-task testing. The final score and the accuracy rates of the different optimized multi-task 
autonomous driving models are shown in Table 7 and Figure 12. (Experiments video can be viewed 
at this URL: https://github.com/MTAD1/Experimental-video-TRT) 

We evaluated the performance of the different multi-task autonomous driving models after 
optimization. As shown in Table 7 and Figure 12, all the autonomous driving models improved on 
both optimized multi-task modes. YS-VGG17_MSE_TRT, although improved in achieving the road 
tracking task, still had the lowest scores and accuracy rates due to its inability to achieve other tasks. 
The final score and the accuracy rate of MT-ResNet26_TRT_ST were the highest in both OMTS 
and OMOD modes due to the excellent performance of MT-ResNet26 and ST Loss. 
 

https://github.com/MTAD1/Experimental-video-TRT
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Table 7. Optimized multi-task autonomous driving model score 

OMTS 

  Model Task I Task II Task III Total Score 

Layout(a) 

ResNet-18_MSE*_TRT 27 29 31 87 
DenseNet-121_MSE*_TRT 28 31 29 88 

YS-VGG17_MSE_TRT 30 0 0 30 
MT-ResNet26_MSE_TRT 29 33 31 93 
MT-ResNet26_ST_TRT 30 35 33 98 

Layout(b) 

ResNet-18_MSE*_TRT 26 31 31 88 
DenseNet-121_MSE*_TRT 26 31 29 86 

YS-VGG17_MSE_TRT 25 0 0 25 
MT-ResNet26_MSE_TRT 28 31 31 90 
MT-ResNet26_ST_TRT 29 33 31 93 

Layout(c) 

ResNet-18_MSE* _TRT 29 29 31 89 
DenseNet-121_MSE*_TRT 27 29 27 83 

YS-VGG17_MSE_TRT 28 0 0 28 
MT-ResNet26_MSE_TRT 28 33 31 92 
MT-ResNet26_ST_TRT 30 35 33 98 

Layout(d) 

ResNet-18_MSE*_TRT 28 31 27 86 

DenseNet-121_MSE*_TRT 27 31 27 85 

YS-VGG17_MSE_TRT 26 0 0 26 
MT-ResNet26_MSE_TRT 27 35 31 93 
MT-ResNet26_ST_TRT 29 35 33 97 

OMOD 
  Model Task I Task II Task III Total Score 

Layout 

ResNet-18_MSE*_TRT 18 21 31 70 

DenseNet-121_MSE*_TRT 21 25 29 75 

YS-VGG17_MSE_TRT 26 0 0 26 
MT-ResNet26_MSE_TRT 25 29 31 85 
MT-ResNet26_ST_TRT 27 33 35 95 
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Figure 12. Accuracy rate of optimized multi-task autonomous driving model 
 

We also investigated the improvement of accuracy for different multi-task autonomous 
driving models. Table 8 shows that the multi-task autonomous driving model using MT-ResNet26 
as the neural network had more accuracy after optimization than the other models. In addition, when 
ST Loss was used as the loss function, the accuracy improvement of the model in achieving multi-
tasks was further enhanced. Among them, MT-ResNet26_TRT_ST had the highest multi-task 
accuracy and showed enormous improvement. This indicated that our proposed MT-ResNet26 and 
ST Loss not only enhanced the robustness of the model and improved the multi-task achievement 
accuracy of the model but also had a large room for optimization, which further improved the 
performance of the model. 
 
Table 8. Degree of accuracy improvement of multi-task autonomous driving model 

  OMTS OMOD 

Model Layout(a) Layout(b) Layout(c) Layout(d) Layout 

ResNet-18_MSE*_TRT 3% 9% 7% 8% 7% 

DenseNet-121_MSE*_TRT 3% 8% 3% 7% 5% 

YS-VGG17_MSE_TRT 4% 5% 3% 6% 6% 

MT-ResNet26_MSE_TRT 7% 10% 8% 9% 8% 

MT-ResNet26_ST_TRT 7% 11% 9% 11% 9% 
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4. Conclusions 
 
We built an autonomous driving smart car that only used one camera as a sensor and proposed two 
approaches of MTS and MOD to achieve multi-task autonomous driving. We found that deep neural 
networks had higher requirements for datasets, while shallow neural networks could not accurately 
achieve multi-task autonomous driving, so we proposed a new deep neural network architecture, 
MT-ResNet-26. In order to achieve the multi-task challenge, we found that the existing loss function 
could not handle the noise and class imbalance from the data, so we proposed a novel loss function 
- ST Loss, which enabled the smart car to achieve multi-task autonomous driving efficiently. 

To test the improvement of our proposed neural network architecture, loss function, and 
multi-task approaches, we used the MT-ResNet26 proposed in this research as the neural network 
and trained MT-ResNet_MSE and MT-ResNet_ST with the original MSE and ST Loss as the loss 
functions, respectively. Moreover, to compare our multi-task approach with existing autonomous 
driving methods, we trained an autonomous driving model YS-VGG17_MSE proposed by Suo et 
al. [22]. We found that YS-VGG17_MSE was far worse than our method for multi-task autonomous 
driving. Furthermore, we used our proposed approach to improve the existing classic models - 
ResNet18 and DenseNet121, and the trained ResNet-18_MSE* and DenseNet- 121_MSE* achieved 
multi-tasks after using our method, which simultaneously verified the applicability of our proposed 
method. Finally, we compared them against MT-ResNet_MSE and MT-ResNet_ST proposed in this 
research to demonstrate the multi-task performance improvement of the proposed neural network 
and loss function. 

For the loss values and variances, the model trained using the MT-ResNet26 deep neural 
network had lower values than other neural networks. In addition, the accuracy of the model could 
be further improved by applying our proposed ST Loss to the model. 

For actual operation, our approach was better than the existing methods. After applying 
our method to the classical model, the classical model could also achieve multi-tasks, reflecting the 
applicability of our approach. Furthermore, MT-ResNet26 and ST Loss effectively improved the 
operation of multi-task autonomous driving. In addition, we tested the multi-task autonomous 
driving performance under unknown scenarios by constructing different track routes. The 
experiments show that the MT-ResNet26_ST model using our multi-task approach performed well 
on untrained routes. 

To further improve the performance in the multi-task scenario, we proposed optimized 
multi-task modes, namely the OMTS and OMOD modes. OMTS and OMOD modes were based on 
the TensorRT framework using FP16 techniques to accelerate the inference of multi-task 
autonomous driving models. Experiments demonstrated that the performance of optimized multi-
task models was improved. In addition, the MT-ResNet26_TRT_ST model had the best multi-task 
performance and the most considerable accuracy improvement after optimization, which also 
indicated that our proposed MT-ResNet26 and ST Loss had superior optimizable. 
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