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 Abstract 
 

The early diagnosis of pox symptoms is an important part of 
preventing a global pandemic. In addition, the estimation of the 
disease stage and time period of pox rash is of interest. Computer 
Aided Diagnosis systems have been developed for identification of 
suspected cases based on machine learning techniques. In recent 
years, many deep learning approaches have been developed to 
classify monkeypox disease. In this study, a monkeypox lesion and 
rash stage classification for self-screening on mobile applications 
using deep learning techniques was introduced. The datasets 
consisted of skin lesion and pox rash images. Data augmentation 
methods were used to increase the sample size and split data into 
training and testing sets in the experiment setup. When comparing 
overall accuracy, EfficientNet achieved an accuracy of 0.95 for pox 
and 0.97 for the pox rash stage. EfficientNet was selected for 
conversion and implementation on the mobile application. The study 
determined that the use of deep learning techniques for monkeypox 
lesions and rash stage classification on a mobile application enabled 
early identification of patients and effective control of community 
spread. 
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1. Introduction  
 
The monkeypox virus became a global public health concern due to its rapid spread to more than 40 
countries outside Africa. Monkeypox is a contagious disease caused by a virus called Zoonotic 
Orthopoxvirus, which is closely related to cowpox and smallpox, and belongs to the Poxviridae 
family [1]. A person with monkeypox can spread the virus from the time symptoms first appear until  
the rash has fully healed. Monkeypox rash can be mistaken for chickenpox, shingles, or herpes [2-
11]. Diagnosis of monkeypox can be done by observing the unusual characteristics of skin lesions,  
as well as by taking into consideration the patient's history of exposure. It can also be confirmed 
through the use of a lab test called polymerase chain reaction (PCR) [12, 13-16]. It can be difficult 
for individuals to self-diagnose monkeypox based on the appearance of the rash alone, as it may 
appear similar to other conditions. Early detection of the disease is challenging, even for people who 
are familiar with the characteristic rash patterns. 

Monkeypox, a rare but potentially severe zoonotic disease, was first discovered in 1958 
and shares clinical similarities with smallpox and chickenpox, thus making its accurate diagnosis a 
challenging endeavor.  With recent reports of monkeypox outbreaks in various parts of the world, 
there is a growing need for timely and accurate diagnostic tools to aid in its early detection and 
management.  The traditional methods of diagnosis, relying on clinical symptoms and laboratory 
tests, can be time-consuming and may not always provide definitive results. 

The advent of computer- aided diagnosis ( CAD)  systems has revolutionized the field of 
healthcare by leveraging advanced technologies such as artificial intelligence (AI)  and machine 
learning. CAD systems have proven invaluable in assisting healthcare professionals in the accurate 
and early diagnosis of various diseases, from cancer to infectious diseases.  In the context of 
monkeypox, where prompt diagnosis can play a pivotal role in limiting its spread and guide 
appropriate clinical interventions, the integration of CAD systems into the diagnostic process holds 
great promise.  The development and implementation of a computer-aided diagnosis system for 
monkeypox that has the potential to significantly enhance the accuracy and speed of diagnosis will 
ultimately improving patient outcomes and aid in the containment of outbreaks.  This research 
represents a critical step towards harnessing the capabilities of modern technology to combat the 
challenges posed by emerging infectious diseases like monkeypox. 

Machine learning (ML) is a growing field of artificial intelligence (AI) with established 
applications in medical diagnosis. In recent years, Deep Convolutional Neural Networks (DCNNs) 
have been successful applied in various domains of medical science. For instance, Jullapak and 
Yampaka [17] assessed the performance of three different deep learning models (VGG19, 
ResNet50, and InceptionV3) to detect coronavirus pneumonia in patients using chest X-ray images. 
The results suggested that the best performance was achieved with the VGG19 pre-trained model, 
which had an accuracy of 0.97, sensitivity of 0.97, specificity of 0.93, and an F1-score of 0.97. 
Yampaka et al. [18] proposed regression mutual information with DCNNs to extract the very large 
image features for COVID-19 classification. Their results showed that the RMI Deep-CNN 
approach significantly improved computation time and model accuracy for COVID -19 
classification.  

Data augmentation is a powerful technique that can help improve the performance and 
robustness of machine learning models. Data augmentation techniques are commonly used in 
machine learning and computer vision to artificially increase the size of a training dataset by 
applying various transformations to the existing data. These transformations create new, slightly 
modified versions of the original data, which helps improve the model's generalization, robustness, 
and performance. Data augmentation techniques are particularly useful when the available training 
data is limited. There are ten techniques of image augmentation commonly used [19]: 1) Rotation 
of images by various degrees (e.g., 90, 180, 270 degrees), 2) Flipping: Horizontally or vertically 
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flipping images, 3) Scaling: Scaling images by resizing them to different dimensions, 4) Translation: 
Shifting images horizontally or vertically, 5) Shearing: Applying shearing transformations to the 
image, 6) Zooming: Zooming in or out of the image, 7) Crop and Pad: Randomly cropping and 
padding images, 8) Color Jitter: Modifying brightness, contrast, saturation, and hue, 9) Gaussian 
noise: Adding random Gaussian noise to the image, and 10) Blur: Applying Gaussian or motion blur 
to the image. 

In addition, a number of studies involved the use of deep learning technique to classify 
monkeypox skin lesions. For example, a newly developed "Monkeypox2022" dataset was published 
and a modified VGG16 deep learning model for monkeypox classification was proposed and 
evaluated [20]. The study showed that the proposed model was able to accurately identify patients 
with monkeypox at a rate of 97%. In another study that employed deep learning models to classify 
monkeypox lesions, it was found that advanced AI deep models on skin images for monkeypox 
detection could be used for detecting monkeypox from digital skin images, with a precision of 85% 
[21-23].  

Although previous studies were able to classify monkeypox using deep learning technique, 
only a few studies can develop a self-screening system. For example, a study by Ali and colleagues 
[24] created a dataset called the "Monkeypox Skin Lesion Dataset" (MSLD), which included skin 
lesion images of monkeypox, chickenpox, and measles. The best overall accuracy they achieved by 
ResNet50 model was 82.96%. In addition, they also developed an online monkeypox screening tool.  
It is not only the classification of monkeypox that is important, but also the knowledge of the 
evolution of the stage of the lesions is necessary because this information can be used to predict the 
period of symptoms. Monkeypox can be challenging due to its similarities with skin rashes caused 
by other Orthopoxviral infections. There are fine differences between the rashes which can be 
helpful in their differentiation, although laboratory analysis is required for a definitive identification 
[25]. Many studies reported that most people recover without treatment, primary care clinicians may 
be the first point of contact for those affected. Prompt assessment, diagnosis, isolation, treatment 
and prophylaxis will reduce the risk of community transmission [26, 27]. 

This research aimed to explore the potential of computer- aided diagnosis in the 
identification and classification of monkeypox cases.  By harnessing the power of AI and machine 
learning algorithms, we sought to develop a CAD system that could analyze clinical data, medical 
images, and other relevant information to provide rapid and accurate monkeypox diagnoses. Such a 
system could assist healthcare practitioners, particularly in resource- constrained settings, where 
timely access to specialized expertise may be limited. 

The main contribution of this study is the provision of a diagnosis tool for monkeypox that 
includes rapid tests that can help with early detection and containment. This study is concerned with 
developing effective public health interventions and strategies to prevent monkeypox outbreaks, 
including surveillance, contact tracing, and isolation measures.  

In recent years, few studies in monkeypox classification focus on of the stage of the 
monkeypox lesion. Therefore, the steps of our study were outlined below: 

(1) Skin lesions (monkeypox, chickenpox, measles, and normal) were classified using 
Deep Convolutional Neural Networks (DCNNs). 

(2) Monkeypox rash stages were classified into five stages: macules (1-2 days), papules (1-
2 days), vesicles (3-5 days), pustules (5-7 days), scabs (7-14), and normal and classified using Deep 
Convolutional Neural Networks (DCNNs). 

(3)  Two datasets ( skin lesions and monkeypox rash stages)  were trained using two light-
weight deep models for edge devices such as MobileNetV2 and EfficientNet and the performance 
of the models were compared. 

(4) The best performing model was selected and converted to Tensorflow Lite for 
implementation in a mobile application. 
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2. Materials and Methods 
 
2.1 Dataset 
 
During the spread of COVID-19, we observed that AI-based image processing was able to diagnose 
and prevent the disease [14, 16, 28]. Healthcare professionals have become increasingly concerned 
about the most recent monkeypox outbreak. The entire dataset was developed by the Department of 
Computer Science and Engineering, Islamic University, Kushtia-7003, Bangladesh [29]. This 
dataset consisted of four classes of images: 279 monkeypox, 107 chickenpox, 91 measles, and 293 
normal. Figure 1 shows some example images from our experiment dataset. Our focus was to 
distinguish cases of monkeypox from cases that could be mistaken for it, such as chickenpox. Hence, 
several data augmentation methods including blur, noise, brightness, darkness, and crop were 
applied to improve the classification performance. Table 1 shows the data augmentation techniques 
that were used in this study. In addition, Table 2 shows the sample sizes of each class. 

Additionally, many individuals are concerned about any lump or bump on their skin.  To 
help with identification of uncertain cases of monkeypox lesion, health agencies such as the U.S. 
Centers for Disease Control and Prevention (CDC) and the U.K.'s National Health Service (NHS) 
have shared images to help distinguish monkeypox lesions at any stage of the disease. These images 
can be used to identify the illness and to estimate the stages of the disease and the duration of the 
stages. Therefore, a monkeypox rash stage dataset was included in this study. Sample of the lesions 
through five stages are shown in Table 3. Figure 2 shows example skin rash or lesions of monkeypox 
and the duration of the stages. 
 

Monkeypox Chickenpox Measles Normal 

    

    
 

Figure 1. Examples of skin images of monkeypox, chickenpox, 
 and healthy cases from the experiment dataset 

 
Table 1. Data augmentation techniques used in this study 
 

Technique Facility 
Blur 5px 

Noise 5% 
Brightness +50% 
Darkness -50% 

Crop 50% 
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Table 2. The sample size of each class used in this study 
 

Dataset Original Augmentation 
Monkeypox 279 780 
Chickenpox 107 262 

Measles 91 270 
Normal 293 441 
Total 770 1,753 

Table 3. The sample size of lesions through five stages 
 

Dataset Original Augmentation 
Macules (1-2 days) 71 231 
Papules (1-2 days) 52 144 
Vesicles (3-5 days) 48 141 
Pustules (5-7 days) 120 365 
Scabs (7-14) 35 77 
Normal 91 293 
Total 417 1,251 

 
Macules 

(1-2 days) 
Papules 

(1-2 days) 
Vesicles 

(3-5 days) 
Pustules 

(5-7 days) 
Scabs 

(7-14 days) 

 
 

    

     
 

Figure 2. Examples of skin rash or lesions of monkeypox and the duration of the stages 
 
2.2 Experiment 
 
2.2.1 Model architecture  
 
In this study, a prototype of a mobile application was deployed for self-screening. Therefore, an 
efficient portable model was developed for this work. TensorFlow Lite is a set of tools that enables 
on-device machine learning by helping developers run their models on mobile, embedded, and edge 
devices. Pre-trained models like EfficientNet, and MobileNet are available on the TcCensorFlow 
Hub. These pre-trained models can recognize 1000 classes of images. Transfer learning is a machine 
learning technique where a model trained on one task is re-purposed on a second related task. This 
approach is particularly useful in deep learning, where models trained on large datasets can be fine-
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tuned on smaller, domain-specific datasets to achieve good performance with less data. By using 
transfer learning, the knowledge and features learned by the pre-trained model on a large dataset, 
reducing the amount of training data and time required to train a model for a specific task. This 
approach is especially useful when working with limited datasets or when training deep learning 
models, which can be computationally expensive and time-consuming. 
   The TensorFlow Lite Model Maker library was used in this study for training and 
converting the lite model for mobile applications. This library supports EfficientNet, and 
MobileNetV2. In this study, we not only created a prediction model but also compared the 
performances of two models.  

The EfficientNet was developed by Tan and Le [30] that optimized both accuracies and 
FLOPS when training the adaptive EfficientNet models on ImageNet. Their experiments revealed 
that the compound scaling method could further enhance accuracy by up to 2.5% compared to other 
single dimension scaling methods, indicating the significance of the proposed compound scaling 
method. 

The MobileNetV2 architecture was an improvement of MobileNetV1. The improvements 
resulted in a significant increase in the model's accuracy. The main modifications included the 
addition of inverted residual blocks and linear bottlenecks, as well as the replacement of ReLU with 
the ReLU6 activation function.  

When EfficientNet was compared with other pre-trained models such as MobileNetV2 in 
terms of model size and inference time. The MobileNetV2 decreased as expected when conversion 
to TensorFlow Lite.  However, the EfficientNet model tends to achieve higher accuracy than the 
MobileNet model. Tan and Le [30] also determined that if model size and inference time are a 
priority over accuracy, then MobileNetV2 should be used, whereas if model accuracy is more 
important, then the EfficientNet model should be chosen over MobileNetV2. To test this 
assumption, not only monkeypox classification but also a comparison of the performance of both 
models were undertaken in this study. 

 
2.2.2 Computation setup and performance evaluation 
 
The digital skin images were divided into training data (80%), validation data (10%) and testing 
data (10%). Since the original data has an imbalance between classes, different numbers of 
augmented images per class were used during training to balance the training data. Tables 2 and 3 
show the distribution of the number of images.  

Training and testing were performed on a Google Colaboratory with Ubuntu 16.04 
operating system using a Tesla K80 GPU graphics card. In this work, images of dimensions (224, 
224, 3) were used as input and fed into two pre-trained models, one of which was the EfficientNet 
model and the other was the MobileNetV2 model. The architectures of the two models were different 
from each other. The output from the last layer was followed by fully connected layers. Lastly, a 
fully connected (FC) layer was employed with a softmax activation function for the classification 
task. The number of training epochs was set to 100.   

The parameters of accuracy, sensitivity, and specificity were used to evaluate the 
performance of the EfficientNet model and MobileNetV2 model. The calculation types of the 
metrics are shown in equations (2)-(4), where TP, FN, FP, TN represent the number of true positives, 
false negatives, false positives and true negatives.   

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =  
𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑭𝑭
 (2) 
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𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =  
𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑭𝑭
 (3) 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 =  
𝑻𝑻𝑻𝑻 +  𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻 +  𝑭𝑭𝑭𝑭 +  𝑻𝑻𝑻𝑻 +  𝑭𝑭𝑭𝑭
 (4) 

 
2.2.3 Model maker and mobile deployment 
 
When deploying a TensorFlow neural-network model for edge device machine learning 
applications, the TensorFlow Lite Model Maker is a tool that simplifies the process of converting 
and customizing a model to fit specific input data. Machine learning models that use TensorFlow 
Lite are created and trained using TensorFlow core libraries and tools, and then converted into a 
more efficient format called a TensorFlow Lite model. Before building the TensorFlow Lite model, 
a model using the TensorFlow core libraries was done. Then, this model was converted to 
Tensorflow Lite.  Figure 3 presented the monkeypox detection system integrates TensorFlow Core 
models, converting them into TensorFlow Lite models, and then uses the mobile application. 
 

 
 

Figure 3. The proposed monkeypox detection system integrates TensorFlow Core models, 
converting them into TensorFlow Lite models, and then uses the mobile application. 

 
TensorFlow Lite supports EfficientNet models, and MobileNetV2 as pre-trained models 

for image classification.  The step-by-step was explained below. 
Step 1: Input data specific to a mobile application were loaded using DataLoader class in 

keras library. It was assumed that all image files that belonged to the same category were stored in 
the same subfolder, with the class name as the name of the folder. Images that had been compressed 
using JPEG or PNG were currently supported. Then, the images were split into training data (80%), 
validation data (10%) and testing data (10%) sets. 
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Step 2: The custom image classifier model based on the loaded data was created. The 
default model used was EfficientNet-Lite0, however, it was possible to switch to MobileNetV2 by 
simply adjusting the model_spec parameter to the MobileNetV2 model specification. 

Step 3: The customized model was evaluated by assessing its results, calculating the loss 
and accuracy of the model. If the accuracy did not meet the desired level for the application, it was 
possible to improve the model by considering options such as using a larger model or altering the 
re-training parameters. 

Step 4: The trained model was transformed into the TensorFlow Lite format, which could 
be used in a mobile application later on. The default file name for the TFLite model was 
“model.tflite”. 

 
2.2.4 Mobile deployment 
 
TensorFlow Lite utilizes TensorFlow models were transformed into smaller, more efficient, and 
more easily transportable machine learning model formats. When the model works on data, that is 
when it performs an inference, it produces prediction results in the form of new tensors, and sends 
them to the Android application. The step by step manner is explained as follows.  

Step 1: To start using the TensorFlow Lite machine learning model interpreter, it was 
necessary to load the model file and set the model parameters. The TensorFlow Lite model was 
composed of a “.tflite” file that held the model's code and was stored in the src/main/assets directory 
of the project. 

Step 2: The interpretation image was transformed into the Tensor data format. Image 
frames were extracted to the camera subsystem by ImageAnalysis object. The camera subsystem 
created a bitmap buffer to hold the data received from the camera. Once a TensorImage object was 
created, the model could then be run on that data to produce a prediction or inference. 

Step 3: Once the image data was processed by the object detection model, it generated a 
list of predictions for the objects that were detected. 

The moblie deployment can be done using Android Studio. The TensorFlow website 
provides code example that can modify and apply them to custom dataset in mobile application. 
 
 
3. Results and Discussion 
 
3.1 Comparison of the accuracy, model size and inference time 
 
When implementing sophisticated deep learning models on mobile devices and edge devices, the 
constraints on processing power and memory with a good speed tends to be challenging. It is 
challenging when the trade-off between the lightweight model, priority accuracy, and speed. Figure 
4 show the results of the comparison of the initial model and converted models. 
 
3.1.1 Skin lesion classification 
 
In the training of initial models (.h5) for skin lesion classification, the testing accuracy values of all 
model were recorded. According to the results, while EfficientNet had a higher testing accuracy, 
MobileNetV2 had a shorter inference time. Specifically, MobileNetV2 had a testing accuracy of 
0.88, while the range for EfficientNet was from 0.90 to 0.95. Furthermore, when comparing the 
inference time of the two models, MobileNetV2 had the lowest time recorded, with little variation 
between the two models. When considering the model size, the MobileNetV2 had the lowest model 
size of 23MB. The model sizes for all EfficientNet models ranged from 45MB to 98MB (Figure 4).  



 
Curr. Appl. Sci. Technol. 2024, Vol. 24 (No. 6), e0257989     Labcharoenwongs et al. 
   

 

9 

0.95

0.88

0.95

0.82

0.75
0.8

0.85
0.9

0.95
1

EfficientNet MobileNetV2

Model Accuracy

models (.h5) models (.tflite)

98

23
2.65 9.2

0
20
40
60
80

100
120

EfficientNet MobileNetV2

Model size (MB)

models (.h5) models (.tflite)

 
 
 

 
 
 
 
 
 
 
 
 
     
 
 

(a) (b) 
 

Figure 4. The performance comparison of initial models (a) and converted models (b) 
 

In the converted models (.tflite) MobileNetV2 showed slightly lower testing accuracy in 
comparison with EfficientNet. The results indicated that MobileNetV2 had a testing accuracy of 
0.82, while EfficientNet models had a testing accuracy range of 0.89 to 0.95 (Table 4). Additionally, 
MobileNetV2 was found to have the fastest inference time when compared to EfficientNet. There 
were non-significant differences in inference time when computed for both models. When 
considering the model size, the MobileNetV2 had the lowest model size of 2.65MB. The model size 
for all EfficientNet models ranged from 3.82MB to 9.2MB (Figure 4).  
 
Table 4. the model performance of training of initial models (.h5) for skin lesion classification 
 

models (.h5) EfficientNet MobileNetV2 

Accuracy 0.95 0.88 

Inference time Slow Fast 

Model size 98MB 23MB 

models (.tflite) EfficientNet MobileNetV2 

Accuracy 0.95 0.82 

Inference time Slow Fast 

Model size 2.65MB 9.2MB 

  
3.1.2 Rash stage classification 
 
In the training of initial models (.h5) for rash stage classification, the testing accuracy values of all 
models were recorded. The study results indicated that while EfficientNet had a slightly higher 
testing accuracy, MobileNetV2 had a faster inference time. Specifically, MobileNetV2 had a testing 
accuracy of 0.88, specificity of 0.85, and sensitivity of 0.89. EfficientNet models had a testing 
accuracy range of 0.94, specificity of 0.93, and sensitivity of 0.95. Additionally, MobileNetV2 was 
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found to have the quickest inference time when compared to EfficientNet. The results revealed that 
there were minimal variations in the inference time of both models. Additionally, when evaluating 
the model size, MobileNetV2 was found to have the smallest size of 33MB. The model size for all 
EfficientNet models ranged from 55MB to 103MB.  

In the .tflite versions of the models, EfficientNet had slightly higher testing accuracy than 
MobileNetV2. Specifically, the testing accuracy for MobileNetV2 was 0.80, specificity of 0.86, and 
sensitivity of 0.77. The EfficientNet models had a range of testing accuracy of 0.93, specificity of 
0.93, and sensitivity of 0.94 (Table 5). The comparison of inference time between MobileNetV2 
and EfficientNet showed that MobileNetV2 had the shortest inference time. The differences in 
inference time between the two models were not considered to be significant. When considering the 
model size, the MobileNetV2 had the lowest model size of 2.7MB. The model sizes for all 
EfficientNet models ranged from 2.77MB to 10.40MB.  
 
Table 5.  The model performance of training of initial models (.h5) for rash stage classification 
 

models (.h5) EfficientNet MobileNetV2 
Accuracy 0.94 0.88 
Specificity 0.93 0.85 
Sensitivity 0.95 0.89 
models (.tflite)   
Accuracy 0.93 0.80 
Specificity 0.93 0.86 
Sensitivity 0.94 0.77 

 
The results made selection for implementation on mobile application clear. If model size 

and inference time were more important than accuracy, then MobileNetV2 was the preferred choice, 
but if disease classification required the highest accuracy, then another model needed to be selected. 
Consequently, the model with the highest lesion classification accuracy, which was EfficientNet-
Lite4, was selected for implementation on the mobile application.  
 
3.2 Mobile application deployment 
 
The most effective model has been implemented in a mobile application prototype. This meant that 
users could take a picture of their skin lesions and receive an initial diagnosis of the skin lesions. 
The users could also take a picture of their rash and receive an initial diagnosis of the rash stage. 
Figure 5 shows the prototype of mobile application.  

Because of the limitations of sample size, several data augmentation methods including 
blur, noise, brightness, darkness, and crop were applied to improve the classification performance. 
Balancing the training data was achieved by using different numbers of augmented images per class. 
Then, the training phase was performed followed by conversion of optimized trained model from 
the initial model (.h5) to TensorFlow Lite model (.tflite). The TensorFlow Lite model makes it easier 
to adjust and convert a TensorFlow neural-network model to suit specific input data when deploying 
it for on-device machine learning applications, such as mobile applications. After model maker 
process was established, the mobile application was implemented using Android Studio. The model 
performances were measured and discussed and the following issues presented: 

(1) The MobileNetV2 model tended to have lower inference time than EfficientNet models, 
nevertheless, the differences were non-significant. When considering the model size, the 
MobileNetV2 had the lowest model size. However, most current deep learning models still have 
large sizes and complex structures, which makes it difficult to perform real-time image classification 
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(a) 
 

 
 

 
 

 
 

(b) 
 

Figure 5. The prototype of mobile application (a) the interface of the skin lesion classification 
screening tool (b) the interface of the rash stage lesion classification screening tool 
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and object detection on mobile devices with limited resources [29]. While MobileNetV2 had the 
advantage of a smaller model size, it had slightly lower testing accuracy when compared to 
EfficientNet. These results were in agreement with the finding of Afzaal et al. [31], who found that 
GoogleNet had the quickest inference time compared to EfficientNet and VGGNet. Simonyan and 
Zisserman [32] conducted a comparison of pre-trained models for disease detection and found that 
there were minimal differences in performance between VGGNet and EfficientNet. In addition, 
Bianco et al. [33] proposed the use of a smart sprayer for precise application of fungicides in potato 
fields, which utilized the EfficientNet architecture. 

(2) Model for Predictive Performance: During the classification of pox symptoms, the 
monkeypox, chickenpox, measles, and normal conditions were the main targets for the DCNNs to 
pick up during the use of DL model for deployment on mobile application for self-screening. In 
addition, the estimation of the disease stage and time period in macules (1-2 days), papules (1-2 
days), vesicles (3-5 days), pustules (5-7 days), and scabs (7-14) is interesting to classify time period 
in macules. Therefore, the development of a self-screening system in pox symptoms and pox rash 
stage using a mobile application was performed in this study. An EfficientNet was created and 
evaluated for its ability to identify patients with monkeypox and to determine the stages and 
progression of the disease. Our approach achieved an accuracy of 0.95 for pox classification and 
0.97 for pox rash stage determination. These results were consistent with the findings of Islam et al. 
[21], who concluded that lighter deep models had the potential for pox classification use on 
smartphones. 
 
 
4. Conclusions 
 
The use of deep learning techniques for monkeypox lesion and rash stage classification on a mobile 
application can enable early identification of infected patients and effective control of community 
spread through self-screening. In our study: 1) Various skin lesions (monkeypox, chickenpox, 
measles, and normal) were classified using Deep Convolutional Neural Networks (DCNNs). 2) The 
monkeypox rash stages were classified into five stages such as macules (1-2 days), papules (1-2 
days), vesicles (3-5 days), pustules (5-7 days), scabs (7-14), and normal conditions using Deep 
Convolutional Neural Networks (DCNNs). 3) Two datasets (skin lesions and monkeypox rash 
stages) were trained using two light-weight deep models for edge devices such as MobileNetV2 and 
EfficientNet and the performances of the models were compared. 4) The best performance model 
was selected and converted to Tensorflow Lite for implementation in a mobile application. In 
addition, not only monkeypox skin lesions were classified in this study but monkeypox rash stages 
were also investigated and classified using Deep Convolutional Neural Networks (DCNNs). Finally, 
physician can easily adapt our model, which is cost and time effective and does not require extensive 
PCR or microscopy testing, for first diagnosis. Although this study provides many advantages, the 
study had some limitations. First, the training dataset contained a limited number of samples. 
Second, the accuracy of the system needs to be further improved. Finally, a limitation of 
classification on mobile applications is that the image must be zoomed in for image sharpness if 
accurate predictions are to be made. 

Monkeypox research is a complex and challenging field. It may require interdisciplinary 
collaboration and a willingness to explore unconventional ideas. This study can be essential in 
pursuing novel research directions. Additionally, staying updated with the latest scientific 
advancements and technologies in related fields is crucial for identifying opportunities for 
innovation in monkeypox research. This limitation produced many challenges during the analysis. 
The use of GAN-AI to create syntactic datasets may be helpful to improve in future studies. 
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