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Abstract 
 

One of the most important problems for planning in economics is that 
reliable data can be difficult to obtain either because it has not been 
recorded or because of nonresponse in surveys.  This paper is aimed 
at proposing new generalized regression estimators using the ratio 
method of estimation for estimating population mean and population 
total and also variance estimators of the proposed generalized 
regression estimators in the presence of uniform nonresponse of a 
study variable. We show in theory that the proposed estimators are 
almost unbiased under unequal probability sampling without 
replacement when nonresponse occurs in the study. In the simulation 
studies, the performances of the proposed estimators were better 
when compared to the existing ones in terms of minimum relative 
bias and relative root mean square error. In an application to Thai 
maize in Thailand with 2019 data, we can see that the proposed 
estimators gave smaller variance estimates when compared to the 
existing estimators. 

 
 
1. Introduction 
 
The Thai economy is weak due in part to lack of investment.  Therefore,  the Royal Thai government 
has a policy that targets ten industries in order to improve growth of the Thai economy under the 
‘Thailand 4.0’ initiative. Production efficiency and competitiveness have become a major problem 
in Thailand’s industrial economic structure. The nonresponse issue can lead to poor planning and 
decision making in business and economics as decisions are being made based on incomplete data. 
We need to address the problem of nonresponse before data can be used effectively in financial  
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planning. Hansen and Hurwitz [1] first pointed out the existence of the issue of nonresponse in mail 
surveys and then introduced a subsampling technique.  Särndal and Lundström [2] proposed the 
generalized regression (GREG) estimator and investigated the variance of the new estimator in the 
presence of nonresponse under a two-phase framework whereby the selected sample was considered 
in the first phase and nonresponse was studied in the second phase. The GREG estimator for 
estimating population total, which was developed from the Horvitz and Thompson estimator [3], 
incorporates the weighting method, which helps to reduce nonresponse bias.  The GREG estimator 
is a form of nonlinear estimator, so its properties such as expectation and variance can be obtained 
using the Taylor linearization approach. However, this approach requires each estimator to be 
derived separately. Estevao and Särndal [4]  proposed the application of an automated linearization 
approach to estimate the variance of the GREG estimator. Chauvet [5] proposed a variance estimator 
for estimators from a 2006 French housing survey. Their proposal involved unit nonresponse and 
calibration and was applied to real data from the city of Rennes. Complementary samples were 
selected from a basic national sample that was obtained from a multistage sampling design. 
 Lawson and Ponkaew [6] proposed a new GREG estimator for estimating total population 
using Lawson’s estimator [7], which proposed a new population total estimator in the form of a 
nonlinear ratio estimator using unequal probability sampling without replacement. They also 
proposed the variance of the new GREG estimator under a reverse framework where the 
nonresponse mechanism was missing completely at random (MCAR). In the reverse framework that 
was introduced by Fay [8], the order of the first and second phases from the two-phase framework 
was reversed. Lawson and Ponkaew [6] studied the scenario of having a small sampling fraction in 
which the response probabilities were uniform. Recently, Lawson and Panich [9] proposed a new 
GREG estimator that was made by adjusting Lawson and Ponkaew’s estimator [6] using different 
nonresponse mechanisms when the response probability was non-uniform and the sampling fraction 
was large and could not be omitted.  

The efficiency of population mean or population total estimators can be improved by 
having a known auxiliary variable, a variable that is positively related to the study variable, using 
the ratio estimator which was pointed out by Cochran [10]. The ratio estimator is very popular in 
research because it is highly efficient. The ratio estimator is biased, but the bias becomes less 
noticeable for large sample sizes. Many available parameters for auxiliary variables have been 
applied to the ratio estimators to increase their efficiency in estimating population mean.  Bacanli 
and Kadilar [11] suggested a new ratio estimator made by replacing the usual population total 
estimator with the Horvitz and Thompson estimator under unequal probability sampling without 
replacement. Later Ponkaew and Lawson [12] proposed a new ratio estimator based on the Bacanli 
and Kadilar [11] and Särndal and Lundström [2] estimators for estimating population total where 
nonresponse existed with MCAR mechanism and small sampling fraction.  
 We proposed new ratio GREG estimators based on the Ponkaew and Lawson [12] and 
Lawson and Ponkaew [6] estimators that used a ratio estimator to create more efficient estimators 
and almost unbiased estimators in the presence of nonresponse using unequal probability sampling. 
The previous estimators used the MCAR mechanism where the sampling fraction was negligible.  
Despite the proposed GREG estimators being studied under the same circumstances as the preceding 
estimators, they were developed to be used when the sampling fraction was large and could not be 
omitted, and could not be used for all sampling fractions. We also suggest variance estimation 
methods for the proposed GREG estimators for use in the case of uniform nonresponse, for both 
when the response probabilities are known and for when the response probabilities are unknown. 
This work can be improved by using a known auxiliary variable to increase the efficiency of the 
estimator when it is being used where non-response exists, which might make it suitable for use as 
an estimator and be stringent enough for economic forward planning. 
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2. Materials and Methods 
 
2.1 Basic setup 
 
Consider a finite population {1,2,..., }U N= of size N . Let  y  be a study variable, and iy be the 
value of y  for a unit labeled i for all i U∈ . We aim to estimate the population total of y defined 
by .i

i U
Y y

∈
= ∑ Suppose we have information about three auxiliary variables denoted by x , k and w . 

Let 1 2( )X x x xN N ′= L  be the ( 1)N q× + matrix of values x  and 1(1 )xi i iqx x ′= L is the

( 1) 1q+ ×  vector of values of the q variates for all unit i U∈ . The auxiliary variables x  were used 
as calibration variables.  The vector of values of auxiliary variables k  are 1 2( )Nk k k ′L  and they 
are used to determine values of first and joint inclusion probabilities under unequal probability 
sampling without replacement. The vector 1 2( )Nw w w ′L  defines the value of the auxiliary 
variables w  for constructing the ratio estimator.   

Under unequal probability sampling without replacement (UPWOR), a sample s of size n  
was selected.  Let F be the set of all possible subsets of U  and sampling design ( )P • be the 
probability measure for possible ,s  i.e. ( ) 0P s ≥  for all s∈F . Let, ( ) ( )i

s i
P i s P sπ

∋
= ∈ =∑ be the 

first order inclusion probability and 
{ , }

( ) ( )ij
s i j

P i j s P sπ
⊃

= ∧ ∈ = ∑   be the second order inclusion 

probability. Under sample s of size n , it is assumed that the information of ( 1)n q× + matrix of 
values x  or 1 2( )X x x xn n ′= L  is known for all xi when i s∈ .  We also  define ( )SE •  and 

( )SV • as the expectation and variance operators, respectively, with respect to UPWOR sampling 
design. 

In the presence of nonresponse, let subscript R  and ir  be the nonresponse mechanism and 
nonresponse indicator variable of iy which 1ir =  if unit i  responds to item y , otherwise 0ir = . 
Let 1 2( )R Nr r r ′= L  be the vector of the response indicator and ( 1)i ip p P r= = = be the 
response probability under uniform nonresponse. Let ( )RE •  and ( )RV • be the expectation and 
variance operators with respect to the nonresponse mechanism.  
 
2.2 The existing estimators 
 
2.2.1 The Ponkaew and Lawson estimator  
 
Ponkaew and Lawson [12] proposed an adjusted ratio estimator which is an almost unbiased 
estimator for estimating population total, following the Bacanli and Kadilar [11] and Särndal and 
Lundström [2] estimators, where nonresponse occurs in the study. They considered circumstances 
under the uniform nonresponse mechanism where the sampling fraction is negligible. The Ponkaew 
and Lawson [12] estimators for estimating the population total is given by 
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*
* ˆˆ

ˆ

i i

ii s r
R i

i HTi U
ii s

r y
p YY w Ww w

π

π

∈

∈

∈

= =
∑

∑
∑

, (1) 

 

where *ˆ i i
r

ii s

r yY
pπ∈

=∑ , ˆ i
HT

ii s

ww
π∈

=∑ , i
i U

W w
∈

= ∑ . 

 
Then the ratio estimator for estimating population mean is defined as 
 

 

*
*

1
ˆ1ˆ

ˆ1

i i

ii s r
R i

i i U HT
ii s

r y
N p YY w Ww N w
N

π

π

∈

∈

∈

= =
∑

∑
∑

, (2) 

 

where * 1ˆ i i
r

ii s

r yY
N pπ∈

= ∑ ,   
1ˆ i

HT
ii s

ww
N π∈

= ∑ ,  
1

i
i U

W w
N ∈

= ∑ . 

 
2.2.2 The Lawson and Ponkaew estimator 
 
Lawson and Ponkaew [6] proposed new GREG estimators and variance estimators for estimating 
population mean and population total using unequal probability sampling without replacement under 
a reverse framework. The nonresponse mechanism was uniform, and the sampling fraction was 
negligible.  The Lawson and Ponkaew [6] estimators are almost unbiased estimators, and they are 
given by 

( )
1

.
ˆ ˆ ˆ ˆ

x
x x xX X X β

i i i i

i ii s i s i i i i i i i i
GREG LP r r r

i i i ii s i s
i ii s i s

r y r
r q r q yY Yr r

π π
π π

π π

−
∈ ∈

∈ ∈

∈ ∈

′ 
  ′ ′    = + − = + −   
     
 
 

∑ ∑
∑ ∑

∑ ∑
, (3) 

 

 
( ). .

ˆ ˆ ˆ ˆˆ X X βGREG LP GREG LP r r rY NY N Y
 ′

= = + − 
 

, (4) 

where ˆ i i i
r

i ii s i s

r y rY
π π∈ ∈

=∑ ∑ , ˆ xX i i i
r

i ii s i s

r r
π π∈ ∈

=∑ ∑  , 
1

ˆ x x xβ i i i i i i i i
r

i ii s i s

r q r q y
π π

−

∈ ∈

′   
=   
   
∑ ∑ , 

 
1X xi

i UN ∈
= ∑ . 

An automated linearization approach was used to find the variance of  .ĜREG LPY  under 
the reverse framework, and the overall sampling fraction was negligible. The Lawson and Ponkaew 
[6] variance estimators are shown in equations (5) and (6): 
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2
1 .

\{ }

1ˆ( )GREG LP i i ij i j
i U i U j i U

V Y D e D e e
p ∈ ∈ ∈

≈ +∑ ∑ ∑ , (5) 

 

 2
2 .

\{ }

1ˆ( ) ( ) ( )( )GREG LP i i ij i j
i U i U j i U

V Y D e e D e e e e
p ∈ ∈ ∈

≈ − + − −∑ ∑ ∑ , (6) 

 

where 1
1(1 )i iD π π −= − , 1( )( )ij i j ij i jD π π π π π −= − , ( )x βi i ie y ′= − , 

1
i

i U
e e

N ∈
= ∑ . 

The estimators of 1 .
ˆ( )GREG LPV Y  and  2 .

ˆ( )GREG LPV Y  are obtained respectively by 
 

 
2

2
1 .

/{ }

ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ,GREG LP i i i ij i i i j
i i s i s j i s
ii s

NV Y D r e D r e r er
π

∈ ∈ ∈

∈

   ≈ +      
 

∑ ∑ ∑
∑

 (7) 

 

 
2

2 2 2
2 .

/{ }

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ,GREG LP i i i r ij i i r j j r
i i s i s j i s
ii s

NV Y D r e e D r e e r e er
π

∈ ∈ ∈

∈

   ≈ − + − −      
 

∑ ∑ ∑
∑

 (8) 

 

where 2
1

ˆ (1 )i iD π π −= − , 1ˆ ( )( )ij i j ij ij i jD π π π π π π −= − , ˆˆ ( )x βi i i re y= −  and  
ˆ

ˆ
i i i

i s
r

i i
i s

r e
e

r

π

π
∈

∈

=
∑

∑
. 

 
Under the reverse framework, the variance of GREG estimator  .ĜREG LPY  is defined by 
 

 . . . 1 2
ˆ ˆ ˆ( ) ( | ) ( | )R RGREG LP R S GREG LP R S GREG LPV Y E V Y V E Y V V= + = + ,             (9) 

 
where    1 .

ˆ( | )RR S GREG LPV E V Y=  and 2 .
ˆ( | )RR S GREG LPV V E Y= . 

 
 Lawson and Ponkaew [6] studied specifically the scenario of a small sampling fraction, so 
the overall sampling fraction is negligible. The formulas from equations (5)-(8) were derived from 
equation (9) when the second component ( 2V ) was omitted. Then, we suggested the Lawson and 
Ponkaew [6] under a situation where the sampling fraction was large, and the second component 
could not be omitted. From equation (9) 2V  is defined by 
 
 2 .

ˆ( | )RR S GREG LPV V E Y= . (10) 

However, .ĜREG LPY  is nonlinear so we use the automated linearization approach to transform 

.ĜREG LPY to a simple form which is defined by 
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.
1ˆ X β i i

GREG LP
i ii s
ii s

r eY r p
p

π
π

∈

∈

′≈ + ∑
∑

, (11) 

 
where ( )x βi i ie y ′= − . 
 
Substituting equation (11) into equation (10), then 

2
1X β Ri i

R S
i ii s
ii s

r eV V E r p
p

π
π

∈

∈

 
 
 ′≈ +
 
 
 

∑
∑

 

                                     
1X β i i

R
i i U

i U

r eV r p
p

∈

∈

 
 
 ′≈ +
 
 
 

∑
∑

i i

i U
R

i

i U

r e
p

V r
p

∈

∈

 
 
 =
 
 
 

∑

∑
 

 
Therefore, 
 

 2

i i

i U
R

i

i U

r e
p

V V r
p

∈

∈

 
 
 ≈
 
 
 

∑

∑
 (12) 

 

From equation (12), we see that i i i

i U i U

r e r
p p∈ ∈

∑ ∑  is nonlinear. By using the Taylor linearization 

approach to transform it, we may write 
 

 
1 ( )

i i

i U i
i

i i U

i U

r e
p re e er N p
p

∈

∈

∈

≈ + −
∑

∑
∑

, (13) 

 

where ( )x βi i ie y ′= −  and 
i

i U
e

e
N

∈=
∑

. 

 
Substituting equation (13) into equation (12), 
 

2
1 ( )i

R i
i U

rV V e e e
N p∈

 
≈ + − 

 
∑ 2

2 2
( )1 ( )R i

i
i U

V r e e
N p∈

= −∑  
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                                                            2
2 2

1 (1 ) ( )i
i U

p p e e
N p∈

−
= −∑  

                                                         2
2

1 (1 ) ( )i
i U

p e e
pN ∈

−
= −∑  

 
Therefore, 
 

 2
2 2

1 (1 ) ( )i
i U

pV e e
pN ∈

−
≈ −∑  (14) 

 
Then, new variance of the estimator of Lawson and Ponkaew [6] is shown as follows: 
 

2 2
1 .

\{ }

1 (1 )ˆ( ) ( )GREG LP i i ij i j i
i U i U j i U i U

pV Y D e D e e e e
p p∈ ∈ ∈ ∈

−
≈ + + −∑ ∑ ∑ ∑ ,  

 
2 2

2 .
\{ }

(1 )1 (1 )ˆ( ) ( ) ( )( ) ( )i
GREG LP i ij i j i

ii U i U j i U i U

pV Y e e D e e e e e e
p p

π
π∈ ∈ ∈ ∈

− −
≈ − + − − + −∑ ∑ ∑ ∑ ,  

 

where 1
1(1 )i iD π π −= − , 1( )( )ij i j ij i jD π π π π π −= − , ( )x βi i ie y ′= −  and 

1
i

i U
e e

N ∈
= ∑  

 
The estimators of 1 .

ˆ( )GREG LPV Y  and  2 .
ˆ( )GREG LPV Y , respectively, are obtained, thus 

 

 
2

2
1 .

/{ }

ˆ ˆ ˆ ˆˆ ˆ ˆ( )GREG LP i i i ij i i i j
i i s i s j i s
ii s

NV Y D r e D r e r er
π

∈ ∈ ∈

∈

   ≈ + +      
 

∑ ∑ ∑
∑

* 2
2*

(1 ) ˆˆ( )
( )

i
i

ii s

rp e e
p π∈

−
−∑  (15) 

 

 
2

2 2 2
2 .

/{ }

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )GREG LP i i i r ij i i r j j r
i i s i s j i s
ii s

NV Y D r e e D r e e r e er
π

∈ ∈ ∈

∈

   ≈ − + − −      
 

∑ ∑ ∑
∑

 

                          
* 2
2*

(1 ) ˆˆ( )
( )

i
i

ii s

rp e e
p π∈

−
+ −∑ ,  (16) 

 

where 2
1

ˆ (1 )i iD π π −= − , 1ˆ ( )( )ij i j ij ij i jD π π π π π π −= − , ˆˆ ( )x βi i i re y= − , 
ˆ

ˆ
i i i

i s
r

i i
i s

r e
e

r

π

π
∈

∈

=
∑

∑
and 

*p p=  if p  is known, and otherwise 
1

* 1ˆ i

i ii s i s

rp p
π π

−

∈ ∈

 
= =  

 
∑ ∑  
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3. Results and Discussion 
 
3.1 The proposed GREG estimators and associated variance estimators 
 
3.1.1 The proposed GREG estimators 
 
We proposed new ratio GREG estimators for estimating the population mean and population total 
based on the estimators of Ponkaew and Lawson [12] and Lawson and Ponkaew [6] using a known 
auxiliary variable to improve the efficiency of the estimators. We considered the proposed 
estimators under the same conditions as the Ponkaew and Lawson [12] and Lawson and Ponkaew 
[6] estimators, where the nonresponse mechanism was uniform and the sampling fraction was small. 
We also extended the new estimators to be able to be used when the sampling fraction was large. 
First, we made three assumptions as follows. 
 

1( ) A The response mechanism is missing completely at random (MCAR), 
1
2

2
ˆ( ) ( ) β βr p rA O n

−
− = , 

3( ) 0 i

ii s

bA V
π∈

 
→ 

 
∑  as n→∞  where i ib w= or ir  

 
 As we mentioned in section 1, the ratio estimator is an efficient estimator that can be used 

to estimate population total or population mean and the Ponkaew and Lawson [12] estimator,  *ˆ
RY  

is in the form of a ratio estimator. We used it to modify the estimator of Lawson and Ponkaew [6] 

to make it more efficient than the existing ones. We proposed to replace  ˆ
rY   in equation (3) with 

*ˆ
RY  in equation (2), and we then obtained the proposed GREG estimator for estimating population 

mean in the presence of nonresponse, which can be shown as follows.  
 

 
( )* *

.
ˆ ˆ ˆ ˆX X βGREG R R r rY Y

′
= + −  (17) 

 
Furthermore, the proposed GREG estimator for estimating population total can be shown as 
 

 
( )* * *

. .
ˆ ˆ ˆ ˆˆ X X βGREG R GREG R R r rY NY N Y

 ′
= = + − 

 
, (18) 

where  
(1)

*
ˆˆ
ˆ
r

R
HT

YY W
w

= , ˆ xX i i i
r

i ii s i s

r r
π π∈ ∈

=∑ ∑  ,  
1

ˆ x x xβ i i i i i i i i
r

i ii s i s

r q r q y
π π

−

∈ ∈

′   
=   
   
∑ ∑ , 

 
1X xi

i UN ∈
= ∑ . 

Theorem 1. Assume that assumptions 1( ) A to 3( ) A hold under the reverse framework, and with  
                    unequal probability sampling without replacement, the proposed GREG estimators  
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                   *
.ĜREG RY  and 

*
.

ˆ
GREG RY  are almost unbiased estimators of Y   and Y ,  respectively. 

 
Proof. 
Recall from (17) and (18) we have  

 
( )* *

.
ˆ ˆ ˆ ˆX X βGREG R R r rY Y

′
= + − ,  

 

 
( )* * *

. .
ˆ ˆ ˆ ˆˆ X X βGREG R GREG R R r rY NY N Y

 ′
= = + − 

 
,  

 
Then, the overall expectation of *

.ĜREG RY  is given by 
 

 
( ) ( ) ( )* * *

. . .
ˆ ˆˆ R RGREG R R S GREG R R S GREG RE Y E E NY NE E Y= = . (19) 

 

However, *
.

ˆ
GREG RY  in (19) is in the form of nonlinear estimator, then we use an automated 

linearization approach to transform the value of  *
.

ˆ
GREG RY , which can be defined as  

 

 
( )* *

.

1
1ˆ ˆ ˆ

1

x β

X X β Xβ

i i i i

i ii s i s
GREG R R r i

i ii U
i ii s i s

r y r
N p

Y Y ww rN
N

π π

π π

∈ ∈

∈

∈ ∈

′
′ ′≈ + − = + −

∑ ∑
∑

∑ ∑
. (20) 

 
Replace (20) into (19), then 
 

 
( )*

.

1
1ˆ

1

x β

Xβ R

i i i i

i ii s i s
GREG R R S i

i ii U
i ii s i s

r y r
N p

E Y NE E ww rN
N

π π

π π

∈ ∈

∈

∈ ∈

′ 
 
 ′≈ + −
 
 
 

∑ ∑
∑

∑ ∑
 

 

                                       

1
1

1

x β
Xβ

i i
i U i U

i
i U

i
i U

y
N

N w
N Nw

N

∈ ∈

∈

∈

 ′ 
 ′≈ + −
 
 
 

∑ ∑
∑

∑
 

 
                                       ( )Xβ XβN Y NY Y′ ′= + − = = . 
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Then, ( )*
.ĜREG RE Y Y≈ , i.e. *

.ĜREG RY , is an almost unbiased estimator of  Y . Furthermore, we can 

conclude that *
.

ˆ
GREG RY  is also an almost unbiased estimator of .Y  

 
3.1.2 The variance of the proposed estimators 
 
In this section, the variance of the proposed estimators was studied under a reverse framework, 
where the nonresponse mechanism was MCAR. Recall from equation (18), the proposed GREG 

estimator for estimating population total was defined by * *
. .

ˆˆ .GREG R GREG RY NY=  Therefore, the 

variance of the population total estimator *
.ĜREG RY  is given by 

 
* * 2 *

. . .
ˆ ˆˆ( ) ( ) ( )GREG R GREG R GREG RV Y V NY N V Y= =                                                                        (21) 

Under the reverse framework the value of *
.

ˆ( )GREG RV Y  can be obtained by 
 

* * *
. . . 1 2

ˆ ˆ ˆ( ) ( | ) ( | )R RGREG R R S GREG R R S GREG RV Y E V Y V E Y V V= + = + ,                                        (22) 
 
 

where *
1 .

ˆ( | )RR S GREG RV E V Y= , *
2 .

ˆ( | )RR S GREG RV V E Y= . 
 

Next, we investigated the value of  *
1 .

ˆ( | )RR S GREG RV E V Y= . The sampling variance of  
*

.
ˆ
GREG RY  assumes that the vector of response probability R  can be derived using the modified 

automated linearization approach, which was proposed by Lawson and Ponkaew [6]. First, an 

automated linearization approach was used to transform the value of  *
.

ˆ
GREG RY , which is defined 

by 

 
( )* *

.
ˆ ˆ ˆX X βGREG R R rY Y

′
≈ + − , (23) 

 

where 
1

β x x xi i i i i
i U i s

q q y
−

∈ ∈

   ′=    
   
∑ ∑ . 

 

From equation (23) we can rewrite *
.

ˆ
GREG RY  as  

 

*
.

1
1ˆ

1

x β

Xβ

i i i i

i ii s i s
GREG R i

i ii U
i ii s i s

r y r
N p

Y ww rN
N

π π

π π

∈ ∈

∈

∈ ∈

′

′≈ + −
∑ ∑

∑
∑ ∑

 (24) 
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Next, we use two estimation methods proposed by Lawson and Ponkaew [6] to transform  *
.

ˆ
GREG RY  

into a linear estimator as follows: 
 

Method 1: Substituting  i

ii s

w
π∈

∑  by i
i U

w
∈
∑  and i

ii s

r
π∈

∑  by i
i U

r
∈
∑  

Let 
 

 *
. (1)

1
1 1ˆ

1

x x

Xβ β  Xβ β

i i i i i i

i i ii s i s i i i s
GREG R i

i i ii U i s
i i U i U

i U

r y r r
N p r yY w

N r N p rw
N

π π π
π

∈ ∈ ∈

∈ ∈
∈ ∈

∈

′ ′

′ ′≈ + − = + −
∑ ∑ ∑

∑ ∑∑ ∑∑
 (25) 

In Method 1, we can approximate the variance of *
.

ˆ
GREG RY   using the continuous mapping theorem 

to transform *
.

ˆ
GREG RY  to a linear form. Recall from assumption 3( ) 0 i

ii s

bA V
π∈

 
→ 

 
∑  as n→∞  

where i ib w= or ir  then Pi
i

ii s i U

b b
π∈ ∈

→∑ ∑  because 

 

2 0.i i
i

i ii s i U i s

b bP b Vε ε
π π

−

∈ ∈ ∈

   
− > ≤ =   

  
∑ ∑ ∑  

 

By using continuous mapping, we can conclude that * *
. . (1)

ˆ ˆp
GREG R GREG RY Y→ , and then the term 

*
.

ˆ( | )RS GREG RV Y  can be approximated as 
 

 * *
. . (1)

ˆ ˆ( | ) ( | )R RS GREG R S GREG RV Y V Y≈  

     
1

x

Xβ β R

i i

ii i i s
S

i ii s
i U

r
r yV

N p r
π

π
∈

∈
∈

′ 
 
 ′= + −
 
 
 

∑
∑ ∑

1
x

β R

i i

ii i i s
S

i ii s
i U

r
r yV

N p r
π

π
∈

∈
∈

′ 
 
 = −
 
 
 

∑
∑ ∑

 

 

 
1 x β R

i i
i i U

S i
i ii s

i U

r y
rV

r Npπ
∈

∈
∈

  
  ′= −      

∑
∑∑

1 x β Ri r i
S i

r ii s

r N yV
N Npπ∈

  ′= −  
  

∑  

 

                            1 Ri
S

ii s

ZV
π∈

 
=  

 
∑ ,  (26) 
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where 1 x βr i
i i i

N yZ r
Np

 ′= − 
 

 and r i
i U

N r
∈

= ∑ .       

Then,  
 

 

* 1
.

ˆ( | )R Ri
S GREG R S

ii s

ZV Y V
π∈

 
≈  

 
∑ and * 1

.
ˆ( | )R Ri

R S GREG R R S
ii s

ZE V Y E V
π∈

 
≈  

 
∑               (27) 

 
Finally, in Method 1 the term 1V  in equation (22) can be approximated by 
 

 *
11 .

ˆ( | )RR S GREG RV E V Y=         
 

 1 Ri
R S

ii s

ZE V
π∈

 
≈  

 
∑ 2

1 1 1
\{ }

R i i ij i j
i U i U j i U

E D Z D Z Z
∈ ∈ ∈

 
= +  

 
∑ ∑ ∑  

 

                    ( ) ( ) ( )2
1 1 1

\{ }
i R i ij R i R j

i U i U j i U
D E Z D E Z E Z

∈ ∈ ∈
≈ +∑ ∑ ∑ ,  

 
Then, 
 

 ( ) ( ) ( )2
1 1 1

\{ }
i R i ij R i R j

i U i U j i U
D E Z D E Z E Z

∈ ∈ ∈
≈ +∑ ∑ ∑ 11V         (28) 

 

where 1(1 )i i iD π π −= −  and 1( )( )ij ij i j i jD π π π π π −= − . 
 
Method 2: Using the Taylor linearization approach 

We apply the Taylor linearization approach to transform *
.

ˆ
GREG RY  in equation (24) into a linear 

estimator which is defined by Method 2, and it is equal to 
 

*
. (2)

1
1 1 1ˆ Constant x β x β

i i
i i i U i

GREG R i i i i
i r ri s i U

r y
Nr y rY w r

N p N NWπ
∈

∈ ∈

  
       ′ ′≈ + − − −     

    

∑
∑ ∑ .     (29) 

 

We can rewrite the function of *
. (2)

ˆ
GREG RY  as follows: 

 

 

* 2
. (2)

ˆ Constant i
GREG R

ii s

ZY
π∈

≈ +∑ ,   (30) 
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where 2

1
1 1x β x β

i i
i i i U i

i i i i i
r r i U

r y
Nr y rZ w r

N p N NW
∈

∈

 
     ′ ′= − − − 
   
 
 

∑
∑ . 

Under Method 2, the term *
.

ˆ( | )RS GREG RV Y  can be estimated by 
 

 * *
. . (2)

ˆ ˆ( | ) ( | )R RS GREG R S GREG RV Y V Y≈  

  2Constant Ri
S

ii s

ZV
π∈

 
= + 

 
∑ 2 Ri

S
ii s

ZV
π∈

 
=  

 
∑  

 
Then,  
 

 

* 2
.

ˆ( | )R Ri
S GREG R S

ii s

ZV Y V
π∈

 
≈  

 
∑ and * 2

.
ˆ( | )R Ri

R S GREG R R S
ii s

ZE V Y E V
π∈

 
≈  

 
∑       (31) 

 
Finally, in Method 2, the term 1V  in equation (22) can be estimated by 
 

 * 2
12 .

ˆ( | )R Ri
R S GREG R R S

ii s

ZV E V Y E V
π∈

 
= ≈  

 
∑ 2

2 2 2
\{ }

R i i ij i j
i U i U j i U

E D Z D Z Z
∈ ∈ ∈

 
= +  

 
∑ ∑ ∑  

 

             ( ) ( ) ( )2
2 2 2

\{ }
i R i ij R i R j

i U i U j i U
D E Z D E Z E Z

∈ ∈ ∈
≈ +∑ ∑ ∑ . 

 
 
Then, 
 

 ( ) ( ) ( )2
2 2 2

\{ }
i R i ij R i R j

i U i U j i U
D E Z D E Z E Z

∈ ∈ ∈
≈ +∑ ∑ ∑ 12V          (32) 

From equation (27) and equation (32), we may write 
 

 1,2m= , ( ) ( ) ( )2
2 2 2

\{ }
i R i ij R i R j

i U i U j i U
D E Z D E Z E Z

∈ ∈ ∈
≈ +∑ ∑ ∑ 1mV          (33) 

 

Next, we investigate the value of *
2 .

ˆ( | )RR S GREG RV V E Y=  in equation (22).  Recall from equation 

(24) that the value of *
.

ˆ
GREG RY  is equal to  
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*
.

1
1ˆ

1

x

Xβ β

i i i i

i ii s i s
GREG R i

i ii U
i ii s i s

r y r
N p

Y ww rN
N

π π

π π

∈ ∈

∈

∈ ∈

′

′≈ + −
∑ ∑

∑
∑ ∑

. (34) 

 
Then,  

 *
2 .

ˆ( | )RR S GREG RV V E Y=

1
1

1

x β

Xβ R

i i i i

i ii s i s
R S i

i ii U
i ii s i s

r y r
N p

V E ww rN
N

π π

π π

∈ ∈

∈

∈ ∈

′ 
 
 ′≈ + −
 
 
 

∑ ∑
∑

∑ ∑
 

 

 

1
1

1

x β
Xβ

i i
i i

i U i U
R i

ii U
i i U

i U

r y r
N p

V w
N rw

N

∈ ∈

∈
∈

∈

 ′ 
 ′≈ + −
 
 
 

∑ ∑
∑ ∑∑

1
x βi i

i i i U
R

ii U
i U

r
r yV

N p r
∈

∈
∈

′ 
 = −  
 

∑
∑ ∑

. 

 
Therefore,  
 

 2
1

x βi i
i i i U

R
ii U

i U

r
r yV V

N p r
∈

∈
∈

′ 
 ≈ −  
 

∑
∑ ∑

.  (35) 

 
From equation (35), we see that the function of parameter in (.)RV  is nonlinear, so we use Taylor 
linearization to transform this value to a linear function that is defined by 
 

 
1 1Constant ( )

x β
X β

i i
i i i U

i i
ii U i U

i U

r
r y r e

N p r Np
∈

∈ ∈
∈

′
′− ≈ + +

∑
∑ ∑∑

,  (36) 

 

where - x βi i ie y ′=  and 
1X β= x βi

i UN ∈
′ ′∑ . 

Substituting equation (36) into equation (35), 

 ( )22 2
1 1 (1 )Constant ( ) .X β X βR i i i

i U i U

pV V r e e
Np pN∈ ∈

  −′ ′≈ + + = + 
 

∑ ∑  (37) 

 
Therefore, 
 

 ( )22 2
1 (1 ) X βi

i U

pV e
pN ∈

− ′≈ +∑ .  (38) 
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From equation (33) and equation (38), we can conclude that the variance of the proposed GREG 
estimator for estimating population mean is given by 
 

 *
1 . 1 2

ˆ( )GREG R mV Y V V≈ +   
                     

( ) ( ) ( ) ( )22
2

\{ }

1 (1 ) X βi R mi ij R mi R mj i
i U i U j i U i U

pD E Z D E Z E Z e
pN∈ ∈ ∈ ∈

− ′= + + +∑ ∑ ∑ ∑ , (39) 

 

where 1,2m= 1 x βr i
i i i

N yZ r
Np

 ′= − 
 

, 

 

2

1
1 1x β x β

i i
i i i U i

i i i i i
r r i U

r y
Nr y rZ w r

N p N NW
∈

∈

 
     ′ ′= − − − 
   
 
 

∑
∑ . 

 
 The variance of the proposed GREG estimator for estimating population mean can be 

obtained by replacing *
.

ˆ( )GREG RV Y  in equation (21) with *
1 .

ˆ( )GREG RV Y  in equation (39). The 

variance of *
.ĜREG RY  is given by  

 
* 2 *

. .
ˆˆ( ) ( )m GREG R m GREG RV Y N V Y≈  

 

( ) ( ) ( ) ( )22 2
2

\{ }

1 (1 ) X βi R mi ij R mi R mj i
i U i U j i U i U

pN D E Z D E Z E Z e
pN∈ ∈ ∈ ∈

 − ′= + + +  
 
∑ ∑ ∑ ∑ , (40) 

 

 where 1,2m= , 1(1 )i i iD π π −= − , 1( )( )ij ij i j i jD π π π π π −= − , - x βi i ie y ′= , 
1X β= x βi

i UN ∈
′ ′∑  

 
Finally, in equation (41) we can show that the estimated value of the variance estimator 

*
.

ˆ( )m GREG RV Y can be obtained by 
 

·( )
* 2* 2 2

. 2 * 2
\{ }

1 (1 )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )
( )

X βi
m GREG R i mi ij mi mj i

ii s i s j i s i s

rpV Y N D Z D Z Z e
N p π∈ ∈ ∈ ∈

 − ′≈ + + +  
 
∑ ∑ ∑ ∑ ,  (41) 

  
where 1,2m= ,  ˆ

miZ  is the estimator of miZ  for all i s∈ , 2ˆ (1 )i i iD π π −= − , 

( ) 1ˆ ( ) ,ij i j ij i j ijD π π π π π π
−

= −  *p p=  if p  is known, otherwise 
1

* 1ˆ i

i ii s i s

rp p
π π

−

∈ ∈

 
= =  

 
∑ ∑ , 
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ˆˆ ( )x βi i i re y ′= − , 
1 1

* *
ˆ x x x x x xi i i i i i i i i i i i i i i i
r

i s i s i ii s i si i

r q r q y r q r q y
p p π ππ π

− −

∈ ∈ ∈ ∈

′ ′       
= =       

      
∑ ∑ ∑ ∑β  and 

·
*

ˆ1 x βX β i i r

i s i

r
N p π∈

′
′ = ∑  

 
 The variance and associated variance estimators of the proposed GREG estimator for 
estimating population total are shown in Theorem 2 and Theorem 3. 
 
Theorem 2. Assuming that 1( )A  to 3( )A  are satisfied under the reverse framework with unequal 

probability sampling without replacement. Let 1 X βi io w YW − ′= − , then the variance of the 
proposed GREG estimators for estimating population total is defined as follows. 
 
(1) *

1 .
ˆ( )GREG RV Y is given by 

 

 ( )* 2 1 2 2
1 .

\{ }

ˆ( ) ( ) (1 ) ( ) ( )X βGREG R i i i ij i j
i U i U j i U

V Y D Npe p p e Np D e e−

∈ ∈ ∈
′≈ + − + +∑ ∑ ∑ .   (42) 

 
(2) *

2 .
ˆ( )GREG RV Y is obtained by 

 

( )* 2 1 2
2 .

\{ }

ˆ( ) ( ) (1 ) ( ) ( )( )X βGREG R i i i i ij i i j i
i U i U j i U

V Y D e o p p e D e o e o−

∈ ∈ ∈
′≈ − + − + + − −∑ ∑ ∑ . (43) 

 
Proof. 
From equation (40), the variance of the proposed estimators is equal to 
 

* 2 *
. .

ˆˆ( ) ( )m GREG R m GREG RV Y N V Y≈  
 

( ) ( ) ( ) ( )22 2
2

\{ }

1 (1 ) X βi R mi ij R mi R mj i
i U i U j i U i U

pN D E Z D E Z E Z e
pN∈ ∈ ∈ ∈

 − ′= + + +  
 
∑ ∑ ∑ ∑     (44) 

where 1 x β
i i
i U

i i i

y r
Z r

Np
∈

 
 ′= −  
 

∑
 

             and 2

1
1 1x β x β

i i
i i i U i

i i i i i
r r i U

r y
Nr y rZ w r

N p N NW
∈

∈

 
     ′ ′= − − − 
   
 
 

∑
∑  

 
(1)  From equation (44) if 1m= , then 
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( ) ( ) ( ) ( )2* 2 2
1 . 1 1 1 2

\{ }

1 (1 )ˆ( ) X βGREG R i R i ij R i R j i
i U i U j i U i U

pV Y N D E Z D E Z E Z e
pN∈ ∈ ∈ ∈

 − ′≈ + + +  
 
∑ ∑ ∑ ∑ . (45) 

 

Recall from equation (44), 1 x β
i i
i U

i i i

y r
Z r

Np
∈

 
 ′= −  
 

∑
, then 

 1( ) ( )x β x β x β
i i
i U i

R i R i i i i i i

y r
y NpE Z E r p p y pe

Np Np
∈

  
   ′ ′ ′= − ≈ − = − =         

∑
. 

 
Therefore, 
 
 1( )R i iE Z pe≈ , (46) 
 
where x βi i ie y ′= − . 
Substituting equation (46) in equation (45), we have  
 

( )2* 2 2 1
1 . 2

\{ }

1ˆ( ) ( ) (1 ) X βGREG R i i ij i j i
i U i U j i U i U

V Y N D pe D pe pe p p e
N

−

∈ ∈ ∈ ∈

 
′≈ + + − +  

 
∑ ∑ ∑ ∑   

    ( )22 2 1

\{ }
( ) ( ) (1 ) X βi i ij i j i

i U i U j i U i U
D Npe Np D e e p p e−

∈ ∈ ∈ ∈
′= + + − +∑ ∑ ∑ ∑  

    ( )( )22 1 2

\{ }
( ) (1 ) ( )X βi i i ij i j

i U i U j i U
D Npe p p e Np D e e−

∈ ∈ ∈
′= + − + +∑ ∑ ∑  

 
Then, 
 

 ( )( )2* 2 1 2
1 .

\{ }

ˆ( ) ( ) (1 ) ( )X βGREG R i i i ij i j
i U i U j i U

V Y D Npe p p e Np D e e−

∈ ∈ ∈
′≈ + − + +∑ ∑ ∑  (47) 

 
(2) The proof of (2) is similar to (1). 
 
Theorem 3. Assuming that 1( )A  to 3( )A are satisfied under the reverse framework with unequal 
probability sampling without replacement, the estimators of variance of the proposed GREG 
estimators for estimating population total derived as follows. 
(1) The estimators of *

1 .
ˆ( )GREG RV Y are given by 
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(2) The estimators of *

2 .
ˆ( )GREG RV Y are given by 
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2 2
ˆ ˆ ˆ ˆ2 2 2 2
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ˆ ˆ ˆ ˆ ˆ ˆ
p i ip ij ip jp

i s i s j i s
E N D Z D Z Z

∈ ∈ ∈

 
= +  

 
∑ ∑ ∑  

 
Proof. 
Recall from equation (41) that the estimators of *

.
ˆ( )m GREG RV Y  are defined by 
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* 2* 2 2

. 2 * 2
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where 1,2m= , ˆ
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(1) If 1m= and p is known then *p p=  and the estimator of 1iZ is given by 
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 Substituting equation (51) and equation (52) into equation (50), then 
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where 2 2
1 1 1 1
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If 1m= and p is known, then 
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Next, if 1m= and p  is unknown, then 
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From equation (54) and equation (55), we may write 
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(2) The proof of (2) is similar to (1). 
 
If the sampling fraction is small, term 2V  in equation (22) can be omitted. The variance of the 

proposed GREG estimators  ( )*
1 .ĜREG RV Y

 
and   ( )*

2 .ĜREG RV Y  can be obtained in Corollary 3 and 

the estimator of the ( )*
1 .ĜREG RV Y  and ( )*

2 .ĜREG RV Y can be obtained in Corollary 4. 

 
Corollary 4. Under the reverse framework with unequal probability sampling without replacement. 
Assuming that 1( )A  to 3( )A are satisfied and the sampling fraction is negligible. The variance of 
the proposed GREG estimators is given by 
 

 * 2 2
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Corollary 5.  Under the reverse framework with unequal probability sampling without replacement, 
assuming that 1( )A to 3( )A are satisfied and the sampling fraction is negligible. The variance 
estimators of the proposed GREG estimators are given as follows.  
(1) The estimators of *

1 .
ˆ( )GREG RV Y  are given by 
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and 
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3.2 Simulation studies 
 
To see the performance of the proposed GREG estimators compared to the Lawson and Ponkaew 
[6] estimators.  A linear model 0 1 2 3i i i i iy x k wβ β β β ε= + + + +  was used to generate the study variable 

iy  with population size N = 5000, where ~ (150,5)ix N , ~ (100,5)ik N , ~ (180,10)iw N ,
~ (0,1)i Nε , 0 1 2 4( , , , )β β β β β ′= = (250, 3.10, 1.5, 4.21)  ′−  and 1,2,..., .i N=   Samples of 

sizes 100,n= 150n=  and 500n=  were selected using unequal probability sampling without 
replacement with Midzuno’s [13] scheme. Under Midzuno’s [13] scheme, the first and second order 
of inclusion probabilities are defined by 
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K N N
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. (62) 

 
We considered three levels of response; 50%, 70% and 85% in the simulation study and 

repeated the study 10,000 times (M=10,000). The relative bias (RB) and the relative root mean 
square error (RRMSE) were used as criteria to compare the performance of the proposed estimators 
with the Lawson and Ponkaew [6] estimators. The relative bias and the relative root mean square 
error of the GREG estimator ( ,ĜREG mY )  and the variance estimator ( ˆ( )m GREGV Y ) are given as 
follows. 
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 ( )
( )( )2

1

1 ˆ ˆ ˆ( )
1ˆ ˆ( ) .ˆ( )

M
m GREG GREG

m
m GREG

V Y V Y
M

RRMSE V Y
V Y

=
−

−
=

∑
 (66) 

 
The results are shown in Tables 1 to 3. Table 1 shows that the proposed GREG estimators 

with the benefit of the ratio estimator performed well in terms of both minimum relative bias and 
relative root mean square error for all situations.  The proposed GREG estimator, *

.ĜREG RY  gave a 
smaller relative bias and relative root mean square error for both when p  is either known or 
unknown. Tables 2 and 3 showed similar results to Table 1 where the proposed variance estimators 
both *

1 .
ˆ ˆ( )GREG RV Y  and *

2 .
ˆ ˆ( )GREG RV Y  performed well. They gave a smaller relative bias and a 

smaller relative root mean square error when compared to the existing Lawson and Ponkaew [6] 
estimator in all situations. We can see that using an auxiliary variable that was related to the study 
variable increased the efficiency of the estimator by using the ratio estimator for estimating 
population total. 
 
Table 1. The relative bias and relative root mean square error of the GREG estimators 

Response 
rate (%) 

Sample 
size 

The response 
probability p  

Relative bias Relative root mean 
square error 

   Lawson 
and 

Ponkaew   

Proposed Lawson 
and 

Ponkaew  

Proposed 

0.5 100 p  is known 0.0283 0.0274 0.0544 0.0432 
  p  is unknown 1.0208 1.0002 1.0444 1.0051 
 150 p  is known 0.0211 0.0207 0.0434 0.0428 

  p  is unknown 1.0137 0.9991 1.0277 1.0041 
 500 p  is known 0.0200 0.0190 0.0421 0.0410 

  p  is unknown 1.0128 0.9981 1.0056 1.0038 
0.7 100 p  is known 0.0201 0.0181 0.0467 0.0421 

  p  is unknown 0. 4400 0.4325 0.4716 0.4385 
 150 p  is known 0.0200 0.0172 0. 0371 0.0369 
  p  is unknown 0.4369 0.4270 0.4388 0.4312 
 500 p  is known 0.0012 0.0010 0.0171 0.0169 
  p  is unknown 0.4296 0.4265 0.4319 0.4298 

0.85 100 p  is known 0.0032 0.0028 0.0171 0.0165 
  p  is unknown 0.4296 0.4285 0.4319 0.4298 
 150 p  is known 0.0027 0.0021 0.0118 0.0110 
  p  is unknown 0.1780 0.1767 0.1840 0.1815 
 500 p  is known 0.0027 0.0021 0.0118 0.0110 
  p  is unknown 0.1780 0.1767 0.1840 0.1815 
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Table 2. The relative bias of the variance estimators 

Response 
rate (%) 

Sample 
size 

The response 
probability p  

Relative bias 

   Method 1 Method 2 
   Lawson 

and 
Ponkaew  

Proposed Lawson 
and 

Ponkaew  

Proposed 

0.5 100 p  is known 1.9244 1.1574 1.9161 1.1472 
  p  is unknown 1.9305 1.1595 1.9338 1.1587 
 150 p  is known 1.3357 1.1350 1.4447 1.1345 

  p  is unknown 1.3956 1.1374 1.4624 1.1372 
 500 p  is known 1.1345 1.0210 1.3387 1.1287 

  p  is unknown 1.1983 1.0251 1.3950 1.1290 
0.7 100 p  is known 0.9726 0.4842 1.8690 0.4601 

  p  is unknown 0.9941 0.4848 1.8780 0.4613 
 150 p  is known 0.7713 0.4601 1.0420 0.4542 
  p  is unknown 0.7912 0.4613 1.0457 0.4548 
 500 p  is known 0.6780 0.4514 1.0396 0.4317 
  p  is unknown 0.6896 0.4583 1.0420 0.4320 

0.85 100 p  is known 0.4038 0.1965 1.1195 0.1965 
  p  is unknown 0.4164 0.1967 1.1207 0.1967 
 150 p  is known 0.3150 0.1850 1.0411 0.1890 
  p  is unknown 0.3280 0.1890 1.0418 0.1898 
 500 p  is known 0.2352 0.1775 1.0318 0.1681 
  p  is unknown 0.2370 0.1784 1.0325 0.1690 

 
3.3 Application to real data 
 
To see the performance of the proposed estimators, we used the data from the Thai maize 
agricultural industry in Thailand in 2019 from the Office of the Agricultural Economics. A sample 
size of 25 provinces was selected according to the unequal probability sampling without replacement 
method using Midzuno’s [14] scheme from a total of 63 provinces with a 70 percent response. Then, 

0.7ip p= = for all 1,2,...,63i=  and we generated the nonresponse indicator ir  using 
~ ( )r rbern p  in the R program (R Core Team (2021)). We computed the value of the estimators 

and their variance estimators for 25n=  and then the value of 
1

1 1ˆ i i i
i s i s

p rπ π
−

− −

∈ ∈

  
=  
  
∑ ∑ was 

equal to 0.71. The study variable y  was the yield of maize in 2019, the auxiliary variables x and 
w  represented the cultivated area and the harvest area in 2019, respectively, and the size variable 
k was the cultivated area in 2018. The average cultivated area and harvest area in 2019 were 1,510 
and 1,492 acres, respectively.  The results are displayed in Table 4. 
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Table 3. The relative root mean square error of the variance estimators 

Response 
rate (%) 

Sample 
size 

The response 
probability p  

Relative root mean square error 

   Method 1 Method 2 
   Lawson 

and 
Ponkaew  

Proposed Lawson and 
Ponkaew  

Proposed 

0.5 100 p  is known 1.8925 1.3449 1.3410 1.3249 
  p  is unknown 1.9957 1.3534 1.3899 1.3531 
 150 p  is known 1.4426 1.2399 1.2564 1.2009 
  p  is unknown 1.4962 1.2397 1.2685 1.2081 
 500 p  is known 1.3867 1.1228 1.1118 1.1115 
  p  is unknown 1.3900 1.1320 1.1290 1.1277 

0.7 100 p  is known 1.0084 0.5239 1.0580 0.5270 
  p  is unknown 1.0190 0.5278 1.1865 0.5304 
 150 p  is known 0.8334 0.5200 1.0457 0.6329 
  p  is unknown 0.8356 0.5218 1.1193 0.5245 
 500 p  is known 0.7341 0.5122 1.0385 0.5108 
  p  is unknown 0.7966 0.5191 1.0393 0.5140 

0.85 100 p  is known 0.3668 0.2577 0.8957 0.2577 
  p  is unknown 0.3748 0.2587 0.8964 0.2581 
 150 p  is known 0.3270 0.2389 0.8527 0.2378 
  p  is unknown 0.3380 0.2404 0.8643 0.2400 
 500 p  is known 0.3168 0.2175 0.7438 0.2142 
  p  is unknown 0.3245 0.2287 0.7548 0.2179 

 
Table 4. The total yield of maize estimates for all provinces and variance estimates for the total 
yield 

Estimator Total yield of maize 
estimates for all provinces 

Variance estimates 

1. Lawson and Ponkaew 
estimator 

544,317 
1 .
ˆ ˆ( ) 584,868,293GREG LPV Y =  

2 .
ˆ ˆ( ) 523,112,394GREG LPV Y =    

2. Proposed estimator 525,124 *
1 .
ˆ ˆ( ) 476,754,210GREG RV Y =  

  *
2 .
ˆ ˆ( ) 455,864,312GREG RV Y =  

 
Table 4 shows the estimated total yield of maize for all provinces in Thailand and the 

estimated variance for the total yield of maize. We can obviously see that both of the proposed 
variance estimators, *

1 .
ˆ ˆ( )GREG RV Y  and *

2 .
ˆ ˆ( )GREG RV Y , gave a lot smaller variance when compared 

to those of the Lawson and Ponkaew estimators in this yield of maize data set. The proposed 
estimators performed very well in terms of minimum variance. 
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4. Conclusions 
 
Using a ratio to estimate population total and population mean increased estimator efficiency. New 
generalized regression estimators for estimating population total using ratios were proposed under 
unequal probability sampling without replacement in the presence of nonresponse. The variances of 
the proposed GREG estimators were also studied under two different methods. We followed the 
method of the Lawson and Ponkaew [6] estimator whereby the GREG estimator was considered 
under a uniform response mechanism.  The proposed GREG estimators using ratios to estimate 
population total outperformed the existing Lawson and Ponkaew [6] estimators in both simulation 
studies and application to real data.    
  For simplicity, the nonresponse mechanism is uniform although it is quite restricted 
because it increases the efficiency of population total estimation. Overall, it outperforms existing 
estimators. The proposed GREG estimators and variance estimation can be useful in many areas of 
study and can help with forward planning. The estimators can improve estimates and thus decision 
making and yield, e.g., total yield, total profit, total number of unemployed people, and total number 
of patients infected by a virus. Effective decision making can improve economic wealth for the 
whole country. In future studies, we intend to extend the proposed GREG estimators using a ratio 
method of estimation for estimating population total and population mean for use in more flexible 
situations, e.g., when the nonresponse mechanism is not uniform, and we also plan to apply them in 
more complex survey designs in the presence of nonresponse. 
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