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Abstract

One of the most important problems for planning in economics is that
reliable data can be difficult to obtain either because it has not been
recorded or because of nonresponse in surveys. This paper is aimed
at proposing new generalized regression estimators using the ratio
generalized regression method of estimation for estimating population mean and population
estimator; total and also variance estimators of the proposed generalized
regression estimators in the presence of uniform nonresponse of a
study variable. We show in theory that the proposed estimators are
almost unbiased under unequal probability sampling without
response probabilities; replacement when nonresponse occurs in the study. In the simulation
studies, the performances of the proposed estimators were better
when compared to the existing ones in terms of minimum relative
bias and relative root mean square error. In an application to Thai
maize in Thailand with 2019 data, we can see that the proposed
estimators gave smaller variance estimates when compared to the
existing estimators.
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1. Introduction

The Thai economy is weak due in part to lack of investment. Therefore, the Royal Thai government
has a policy that targets ten industries in order to improve growth of the Thai economy under the
‘Thailand 4.0’ initiative. Production efficiency and competitiveness have become a major problem
in Thailand’s industrial economic structure. The nonresponse issue can lead to poor planning and
decision making in business and economics as decisions are being made based on incomplete data.
We need to address the problem of nonresponse before data can be used effectively in financial
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planning. Hansen and Hurwitz [1] first pointed out the existence of the issue of nonresponse in mail
surveys and then introduced a subsampling technique. Sérndal and Lundstrom [2] proposed the
generalized regression (GREQG) estimator and investigated the variance of the new estimator in the
presence of nonresponse under a two-phase framework whereby the selected sample was considered
in the first phase and nonresponse was studied in the second phase. The GREG estimator for
estimating population total, which was developed from the Horvitz and Thompson estimator [3],
incorporates the weighting method, which helps to reduce nonresponse bias. The GREG estimator
is a form of nonlinear estimator, so its properties such as expectation and variance can be obtained
using the Taylor linearization approach. However, this approach requires each estimator to be
derived separately. Estevao and Sérndal [4] proposed the application of an automated linearization
approach to estimate the variance of the GREG estimator. Chauvet [5] proposed a variance estimator
for estimators from a 2006 French housing survey. Their proposal involved unit nonresponse and
calibration and was applied to real data from the city of Rennes. Complementary samples were
selected from a basic national sample that was obtained from a multistage sampling design.

Lawson and Ponkaew [6] proposed a new GREG estimator for estimating total population
using Lawson’s estimator [7], which proposed a new population total estimator in the form of a
nonlinear ratio estimator using unequal probability sampling without replacement. They also
proposed the variance of the new GREG estimator under a reverse framework where the
nonresponse mechanism was missing completely at random (MCAR). In the reverse framework that
was introduced by Fay [8], the order of the first and second phases from the two-phase framework
was reversed. Lawson and Ponkaew [6] studied the scenario of having a small sampling fraction in
which the response probabilities were uniform. Recently, Lawson and Panich [9] proposed a new
GREG estimator that was made by adjusting Lawson and Ponkaew’s estimator [6] using different
nonresponse mechanisms when the response probability was non-uniform and the sampling fraction
was large and could not be omitted.

The efficiency of population mean or population total estimators can be improved by
having a known auxiliary variable, a variable that is positively related to the study variable, using
the ratio estimator which was pointed out by Cochran [10]. The ratio estimator is very popular in
research because it is highly efficient. The ratio estimator is biased, but the bias becomes less
noticeable for large sample sizes. Many available parameters for auxiliary variables have been
applied to the ratio estimators to increase their efficiency in estimating population mean. Bacanli
and Kadilar [11] suggested a new ratio estimator made by replacing the usual population total
estimator with the Horvitz and Thompson estimator under unequal probability sampling without
replacement. Later Ponkaew and Lawson [12] proposed a new ratio estimator based on the Bacanli
and Kadilar [11] and Sdrndal and Lundstrém [2] estimators for estimating population total where
nonresponse existed with MCAR mechanism and small sampling fraction.

We proposed new ratio GREG estimators based on the Ponkaew and Lawson [12] and
Lawson and Ponkaew [6] estimators that used a ratio estimator to create more efficient estimators
and almost unbiased estimators in the presence of nonresponse using unequal probability sampling.
The previous estimators used the MCAR mechanism where the sampling fraction was negligible.
Despite the proposed GREG estimators being studied under the same circumstances as the preceding
estimators, they were developed to be used when the sampling fraction was large and could not be
omitted, and could not be used for all sampling fractions. We also suggest variance estimation
methods for the proposed GREG estimators for use in the case of uniform nonresponse, for both
when the response probabilities are known and for when the response probabilities are unknown.
This work can be improved by using a known auxiliary variable to increase the efficiency of the
estimator when it is being used where non-response exists, which might make it suitable for use as
an estimator and be stringent enough for economic forward planning.
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2. Materials and Methods
2.1 Basic setup

Consider a finite population U ={1,2,..., N} of sizeN. Let y be a study variable, and y; be the

value of y for a unit labeled i for all ieU . We aim to estimate the population total of ) defined

by Y= y;.Suppose we have information about three auxiliary variables denoted by x, k and W.
ieU

Let Xy =(x; x, L xp)" be the Nx(g+1)matrix of values x and x; =(1 x;; L xiq)'is the

(g+1)x1 vector of values of the ¢ variates for all unit i €U . The auxiliary variables x were used

as calibration variables. The vector of values of auxiliary variables k are (k; k, L ky )" andthey
are used to determine values of first and joint inclusion probabilities under unequal probability
sampling without replacement. The vector (w; w, L WN)' defines the value of the auxiliary

variables w for constructing the ratio estimator.
Under unequal probability sampling without replacement (UPWOR), a sample s of size n
was selected. Let & be the set of all possible subsets of U/ and sampling design P(s) be the

probability measure for possible s, i.e. P(s)>0 forall se€¥ .Let, 7; =P(ies)=_ P(s)be the

§31
first order inclusion probability and 77;; = P(injes)= >, P(s) be the second order inclusion
so{i,J}
probability. Under sample s of size n, it is assumed that the information of nx(g+1) matrix of
values x or X, =(x; x, L x,)" is known for all x; when i€s. We also define Eg(e) and
V(o) as the expectation and variance operators, respectively, with respect to UPWOR sampling
design.

In the presence of nonresponse, let subscript R and 7; be the nonresponse mechanism and
nonresponse indicator variable of y; which 7 =1 if unit i responds to item y, otherwise 7;=0.
Let R=(r; » L ry) be the vector of the response indicator and p,=p=P(r;=1) be the
response probability under uniform nonresponse. Let Ep(e) and V(o) be the expectation and

variance operators with respect to the nonresponse mechanism.
2.2 The existing estimators
2.2.1 The Ponkaew and Lawson estimator

Ponkaew and Lawson [12] proposed an adjusted ratio estimator which is an almost unbiased
estimator for estimating population total, following the Bacanli and Kadilar [11] and Sé&rndal and
Lundstrom [2] estimators, where nonresponse occurs in the study. They considered circumstances
under the uniform nonresponse mechanism where the sampling fraction is negligible. The Ponkaew
and Lawson [12] estimators for estimating the population total is given by
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Then the ratio estimator for estimating population mean is defined as
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2% 1 ny; -~ 1 w, = 1
where Y, =—> L Wy, = —’, W=—>3w
' Nies ;P Nzev NieU

2.2.2 The Lawson and Ponkaew estimator

Lawson and Ponkaew [6] proposed new GREG estimators and variance estimators for estimating
population mean and population total using unequal probability sampling without replacement under
a reverse framework. The nonresponse mechanism was uniform, and the sampling fraction was
negligible. The Lawson and Ponkaew [6] estimators are almost unbiased estimators, and they are
given by
’
Z hYi Z 1 X
}% _ies %i +| X —ies 7T
GREG.LP — 7
A
T

Z

r; T; T;

z 1gi%iX ] [Z 1idi lylj }%r—'—()?_)%r) ﬁr’ 3)
il ies 1 ies 1
ies i
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where Y Z Z Z Z (Z i xxj (Z hidi tyzj

jes i jes 7 ies i jes 7 ies i

- 1
ieU
An automated linearization approach was used to find the variance of Ysppg p under

the reverse framework, and the overall sampling fraction was negligible. The Lawson and Ponkaew
[6] variance estimators are shown in equations (5) and (6):
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A 1 )
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- -1 iy = |
where D; =(1-7;)7, I D, =(7Z'i7Z'j—7le)(7[i7[j) ,e=(y;—x/p), e =N D e
ieU

The estimators of V) (I}G reG.Lp) and V5 (I}G REG.Lp) are obtained respectively by

A oA N A A
" (YreG.LP) = ZD’” F+Y Y Dyréneé; ™)
z ni ies ies j/{ites
ies i
2
5> v a 2.2 ~ 2 .2
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where ﬁi =(1—7zi)7r1_2, ﬁij =(7rl~ —7T;; )(ﬂ'ljﬂ'lﬂ]

Under the reverse framework, the variance of GREG estimator Y;ppg 1 p is defined by

V(Yoree.rr)=ErVs Voreg.Lr | R)+VREs Ygre.Lp | R) =V +V5, ©)
where 7] =EgVs(Ygppg.op|R) and Vs =VxEs(Ygrpc.op|R) -

Lawson and Ponkaew [6] studied specifically the scenario of a small sampling fraction, so
the overall sampling fraction is negligible. The formulas from equations (5)-(8) were derived from

equation (9) when the second component (¥, ) was omitted. Then, we suggested the Lawson and

Ponkaew [6] under a situation where the sampling fraction was large, and the second component
could not be omitted. From equation (9) ¥, is defined by

Vy=VREs(Ygreg.Lp|R)- (10)
However, Y;ppg p is nonlinear so we use the automated linearization approach to transform

?G rEG.Lp to a simple form which is defined by
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Substituting equation (11) into equation (10), then
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From equation (12), we see that z
ieU p

approach to transform it, we may write

ieU p

e

where e; =(y; —x;f) and E=%
Substituting equation (13) into equation (12),
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an

(12)

> -L is nonlinear. By using the Taylor linearization

(13)

. —2)’
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Then, new variance of the estimator of Lawson and Ponkaew [6] is shown as follows:
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The estimators of V] (Ygreg.p) @and Vs (Ygreg 1p) > respectively, are obtained, thus
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3. Results and Discussion
3.1 The proposed GREG estimators and associated variance estimators
3.1.1 The proposed GREG estimators

We proposed new ratio GREG estimators for estimating the population mean and population total
based on the estimators of Ponkaew and Lawson [12] and Lawson and Ponkaew [6] using a known
auxiliary variable to improve the efficiency of the estimators. We considered the proposed
estimators under the same conditions as the Ponkaew and Lawson [12] and Lawson and Ponkaew
[6] estimators, where the nonresponse mechanism was uniform and the sampling fraction was small.
We also extended the new estimators to be able to be used when the sampling fraction was large.
First, we made three assumptions as follows.

(4;) The response mechanism is missing completely at random (MCAR),
1

(4) B.—p=0,(n,?),

b.

(4) V]| > -~ |—>0 as n—>o0 where b, =w; or r;
jes i

As we mentioned in section 1, the ratio estimator is an efficient estimator that can be used

to estimate population total or population mean and the Ponkaew and Lawson [12] estimator, 17;
is in the form of a ratio estimator. We used it to modify the estimator of Lawson and Ponkaew [6]

to make it more efficient than the existing ones. We proposed to replace z in equation (3) with

Y, ; in equation (2), and we then obtained the proposed GREG estimator for estimating population

mean in the presence of nonresponse, which can be shown as follows.
Ly . — 2\ .
YoreG.R =R +(X_Xr B, (17)

Furthermore, the proposed GREG estimator for estimating population total can be shown as

Yorec.r =NYereG.r :N{?R +(§—)_(r) ﬁr:|’ (18)
.. ya
where }7;=YV() Z z (Z i zxx] [Z hidi zyz]
"T’HT ies i ies 7% jes i jes i
1
X==>«x
NieU l

Theorem 1. Assume that assumptions (4) to (4) hold under the reverse framework, and with
unequal probability sampling without replacement, the proposed GREG estimators
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oL o . . = .
Yorecr and Ygrpg p are almost unbiased estimators of 1 and Y, respectively.

Proof.
Recall from (17) and (18) we have

}%(;REG.R 2?1: +()_(_)L(r )' B..
YA(;‘REG.R :N?(;REG.R :N{ﬁ: +(‘)_(_)L(r ), ﬂAr:| ’
Then, the overall expectation of I}G* REG.R 1S given by
E()}G*REG.R )=ERES (N?G*REG.R ‘R)ZNERES ()%G*REG‘R‘R) : (19)

L* . . . . .
However, Yoppg p in (19) is in the form of nonlinear estimator, then we use an automated

. . . L* .
linearization approach to transform the value of Y;pp g, Which can be defined as

Z i ZM
7 ~¥p+ )L( X, Ml _ies T 20
GREGR =R+ ﬁ' B+ ] NZWi . 20)
7Zﬁ ieU Zi
N i i o T
Replace (20) into (19), then
—Z i), zM
E();G*REG,R)zNERES X’ﬂ’_{_L’pl Wi_ies 7T R
i ﬁ NieU Zi
Nies 7T ics i
1 ’
_ N in 1 Zl:]xiﬁ
~N Xﬂ'+L—ZW~—lE
1 Wl NIEU ' N
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Then, E (YgREG R)zY , 1.e. Y;REG‘ z » 18 an almost unbiased estimator of Y . Furthermore, we can

A* —
conclude that YGREG_ r 1s also an almost unbiased estimator of Y.

3.1.2 The variance of the proposed estimators

In this section, the variance of the proposed estimators was studied under a reverse framework,
where the nonresponse mechanism was MCAR. Recall from equation (18), the proposed GREG

estimator for estimating population total was defined by ng eGR=N YG*R EG.Rr- Lherefore, the

. . . ok . .
variance of the population total estimator Y;ppg g 1S given by

e Ly 0. L
V(¥GreG.R)=V (NYGrEG.R) =NV (YGREG.R) 1)
Under the reverse framework the value of V(I7G’k REG.R) can be obtained by

V(Yorea.r)=ErVs Yorec.r | R)VVREs Voreg.r | R)V=Vi +V5, (22)

where V] =EpVs(Yorpg.r|R) . Va =VREs(Ygrec.r | R)-

Next, we investigated the value of V| =FEgpVs (YG* rEG.R | R) . The sampling variance of

YG*R £G.gr assumes that the vector of response probability R can be derived using the modified
automated linearization approach, which was proposed by Lawson and Ponkaew [6]. First, an

. . . L* . .
automated linearization approach was used to transform the value of Y;ppg g, Which is defined
by

YG*REG.RZYI:_’_(X_XV) /B (23)

-1
where ﬂz( 2 Clixix'j {Z Qixiyij'

ieU ies

. . L
From equation (23) we can rewrite Y;ppc g as

i z )i Z rixz{ﬂ
2 — N =mp 1 =
Vorean = Xf +=70 1 3 gyt ZL (4)
7271 ieU Zil
N ies i jes i

10
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Next, we use two estimation methods proposed by Lawson and Ponkaew [6] to transform YG* REG.R

into a linear estimator as follows:

Method 1: Substituting Z by > w, and Z by >

ies ieU lES ieU
Let

z U Z r-x,f ”;xl,

N Zmp 1 —

YGREG Rty S XP+—= N > Wi_lesz p = Z;; —leszrl B (25)

. =04 j
ZUW ' ieU i lGS ieU '
lE

. . L* . . .
In Method 1, we can approximate the variance of Y5pp; g using the continuous mapping theorem

o . . b;
to transform YG* REG.R o alinear form. Recall from assumption (A45) V(Z—’ —>0 as n—>o0
ies *i

b p
where b; =wj or 7; then )’ ——~——— >" b; because

ies i ieU
>5j£g_2V[Zﬁj=0.
jes 7

|

. . . Lo Loy
By using continuous mapping, we can conclude that Ysprc p —L2 YoreG R(1)> and then the term

Aoy

ies i ieU

Vs (YG* rEG.R | R) can be approximated as

Vs YVorecr 1 R =Vs Yorec ray | R)

! !

i X riXi
T 2
_VS Xﬂ +_ l _ies ! ﬂ R z l _les ! ﬂ R
Nles”p ZI" lesﬂ-p Zrl
ieU ieU

_y| v igl:/n.yi_xtp R|=v. in Novi gl
SIS & SIN, Zx\ Np 7

—_ RJ, (26)

11
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ieU
Then,
Vs (YoreG.r | R)=Vs| Z—HR |and ExVs(Yoreg.r | R)~ERVs| 2 —-R 27
jies i ies i
Finally, in Method 1 the term ¥} in equation (22) can be approximated by
V1=ExVs(Ygreg.r | R)
Zli 2
~ERVs 27 R|=Eg| X DZi+> X VAT,
ies ’fi ieU ieU j\{iteU
2
~ Y. DEg (Zli)+ DI Dy Ep (Zli)ER (le),
ieU ieU j\{iteU
Then,
2
~ 2. DiEp (Zli)+ > 2 DyEg(Zy)Eg (le) i (28)

ieU ieU j\{iteU
where D; =(1-z;)z; ' and Dy; =(7; —ﬂiﬂj)(ﬁiﬁj)fl.

Method 2: Using the Taylor linearization approach

We apply the Taylor linearization approach to transform YG*R EG.R 1N equation (24) into a linear

estimator which is defined by Method 2, and it is equal to

1

2 Y
24 1| 1|rny, N;
YGREG.R(Z)zConstanHZZ ~ %—%Wi
I1ES

T
We can rewrite the function of Y5rr p(2) as follows:

A, 7.
YG*REG.R(Z) ~Constant+ Y =2

ies i

12

_%(x;ﬁ_NLz rixlfﬂj . (9)

rieU

(30)
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1
DI
1| ry, N; r(, 1 ,
where Zy; =) <ot ‘N—’,("f/”‘ﬁg,’?xf"’j-

Under Method 2, the term Vg ()7(;k REG.R | R) can be estimated by

g

Lok A
RJ and EpVs(Yorec.r|R)=ERVs [Z -

ies *i

Vs YreG.r | R =Vs YrEG R(2) | R)
2y

=V (Constant+ >

ies *i

Rj =VS[2@

ies ti

Then,

Lk YA
Vs (YoreG.R R)zVs(Zl Rj (31)

ies Yi

Finally, in Method 2, the term ¥} in equation (22) can be estimated by

Ly yA
Na=ErVs(Yoreg rIR) = ERVs (Z 2

ies Ci

2
R] =Ep { XDZy+ Y X Dl:]'ZZiZZjJ

ieU ieU j\{iteU

~ Y D,Eg (Zzzi)Jr 2 Y DyEg(Zy)Eg (ZZ/)'

ieU ieU j\{iteU
Then,
2
~ 2. DiEp (ZZi)+ Y. 2 DyEg (Z2i) Eg (sz) M2 (32)
ieU ieU j\{iteU

From equation (27) and equation (32), we may write

m=1.2,~ ¥ DER(Z3 )+ X X DyEr(Zs)E(Z2;) Vim (33)
ieU ieU j\{iteU

Next, we investigate the value of V, =V, E¢ (7; REG.R | R) in equation (22). Recall from equation

(24) that the value of YG* REG.R 1 €qual to

13
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RRSRAY 5 /i
N; ies %iP 1 ies i
Vorrgp~Xp+—1S"E 25w, B (34)
1w Nig zi
N jes i jes i
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1 ry 3 nxip
L — N=rmp 1 T;
Vo =VrEs(Yoreo.r | R) *VREg| XB'+ P 2w =——|R
1w Nig zi
N ies i ies i
VES L Ees| (,,, T
~VR Xﬂ-i— zeU _ZW eu R Z NP et
7ZW NIEU Z”z NleUp Z}"
zeU ieU ieU
Therefore,
2 X
VZNVR Z l lEU
NzeU p Z i

. (35)
ieU

From equation (35), we see that the function of parameter in ¥ (.) is nonlinear, so we use Taylor
linearization to transform this value to a linear function that is defined by

Uy 2 X . ~
— Y €U xConstant+— Y ri(e; + X '), (36)
Nt'eU p Z I N ieU o
ieU

’ v/ 1 i
where ¢;=y;-x/f and XB=—2 x/f.
NieU
Substituting equation (36) into equation (35)

1 1 d-p)
Vy = Vi (Constant+— A +Xﬂ)j S (e+XB). (37)
Np ieU N p lEU( )
Therefore,

1 (1 p) v/ 2
V, x— e+ XB) . 38
TN p ;,( ’) oo

14
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From equation (33) and equation (38), we can conclude that the variance of the proposed GREG
estimator for estimating population mean is given by

NYreG.R)=Vim +Va
1 (1-p) 2
2 '
= D.E, (Zm,.)+ Y Y DyEp(Zu)Ep(Zuy)+t—— X (¢ +XB) . (39)
ieU ieU j\ileU N P v

Ny
where m:l,2Zli:r.( ry’—xlfﬂ}

1 Np
1
1] ry NZ”;‘J’:‘
i1 iU
= W, —— Y x|
2! N p W ( ﬂ N}, lg] ﬁ\]

The variance of the proposed GREG estimator for estimating population mean can be
obtained by replacing V(?(’;REG.R) in equation (21) with VI(YG*REG. g) in equation (39). The

. ok . .
variance of Yoppg g 1S given by

A 2 -
Vi (YoreG.R) NV, (YorEG.R)

ieU j\{iteU

1 (1-p) o2
=N2[i§]DiER(Z,3”.)+Z 3 D,.J.ER(Zm,.)ER(ij)+FTpi§](ei+Xﬁ) J (40)

— -1 ' v/ 1 ’
ieU

Finally, in equation (41) we can show that the estimated value of the variance estimator

v, (};G* REG.R) can be obtained by

A ax AN A A 1 1— =, \2
Vm(YGREG.R)zNZ[Z i ml+z z DljZml m] ( p )Z (i+Xﬂ) Ja (41)

ies ies j\{i}es ies i

where m=12 , Z,. is the estimator of Z, . for all ies , Dy=(l-z)z > ,

-1
A . . . U A % 1
Dy =(mim; - ﬂl/)(ﬁlﬁjﬁ ) , p =p if p is known, otherwise p :p:Z;’Z(ZZJ ,
1ES 1ES
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R . A 7'~ql~xixl{ lql lyl i lx x lql lyl
G=(yi-xiB) . B=| L Z [Z J (Z j "
l l o ﬂ” [ies p ies 7TP ies i ies i

= rx
ies pﬂi

The variance and associated variance estimators of the proposed GREG estimator for
estimating population total are shown in Theorem 2 and Theorem 3.

Theorem 2. Assuming that (4;) to (A4;) are satisfied under the reverse framework with unequal

probability sampling without replacement. Let o; = WIY wl-Xx B, then the variance of the
proposed GREG estimators for estimating population total is defined as follows.

(H N (?C*?REG.R) is given by

Norec.r)= X (Di(Npe)’ +(1-p)p~ (e + X’ )+ (NpY’ X T Dyee;.  (42)
ieU ieU j\{iteU

) Vy(Yoppc r) is obtained by

Boree)= X (Dile=0)’ +(=p)p '@+ XBY ]+ X X Dyle—o0)(e;=0,). 43)
ieU ieU j\{i}eU

Proof.
From equation (40), the variance of the proposed estimators is equal to

A% 2 Lo
Ve (YorEGR) NV, (YGREG.R)

—NZ[ZDER( )+ X X DyEr(Z, )ER(Zm)+NLuz(i+)_('ﬂ)2] (44)

ieU ieU j\{iteU P v

Vi 2

_ icU ’
where Z); =¥; -x;f

Np
1
1] ry, N Z hYi
and Zy, =—| AL 1€U___, | [xﬂ——erﬁj
l N p w l Nr ieU

(1) From equation (44) if m=1, then
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s I (- -
N(TerpeR) =N’ ZDiER(lei)+z 2 DijER(Zli)ER(le)'l'F%_%(ei+Xﬂ)2 - (45)

ieU iU j\{iteU

Vi Z 4

Recall from equation (44), Zy; =r; ;\GI—U—xlf P |, then
p
Vi 2 3, Np
eU ' ] ' '
ER(Zy))=Eg|r; ;\E]—p—xiﬂ zp[;v—p_xiﬂj:p(yi -x;f)=pe;.

Therefore,

Eg(Zy;)= pe;, (46)

where ¢, =y, —x;f .
Substituting equation (46) in equation (45), we have

o 1 _ =, \2
V1<YGREG.R>zN2[zD,-<pe,-)2+z > Dypepe;+—(1-p)p~' Y (¢+X ) J
ieU ieU j\{iteU N iU

=Y Di(Npe’+Y Y (Np):Dyee;+(-p)p' Y (¢+ X B)’

ieU ieU j\{iteU ieU
_ Sip\2
=2 (D[(Npei)2+(1_p)p 1(e,~+Xﬂ) )"‘ IS (NP)Zngeiej
ieU ieU j\{iteU

Then,

A s _ =, 2
Vl(YGREG.R>zZ(Di(Npei)%(l—p)p e+ XB) )+Z > (Np)’Dyee;  (47)
ieU ieU j\{iteU

(2) The proof of (2) is similar to (1).

Theorem 3. Assuming that (A4;) to (4;)are satisfied under the reverse framework with unequal

probability sampling without replacement, the estimators of variance of the proposed GREG
estimators for estimating population total derived as follows.

(1) The estimators of V] (?g REG.R) are given by
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A \2
r . (I-p) Z%[éﬂrLz rixiﬂVJ , when p is known

Elp + p2 : Np jes i
A A% ies
N(YoreGR)= , (48)

A \2
a (l_ﬁ) Tl 4 1 rixz(ﬂr ;
E +—=> Ll é+— , When p is unknown

ies

-1 A A
h A 7 1 5 Nryi "p 2 _ Nryi " p
where P—Z— 2_ > Zlip_r;' Np -xip, | 1ip =1 le) _xiﬂr >

jes i \ies i
A 'p . i 2 2 A 52 A S5
¢=y;-xif,, N.,=2 -, Ey,=N |:ZDiZIip+Z > DijZlipZij:|’
ies ’ti ies ies j\{i}es
R ) A an A A A
Ejp=N |:ZDiZIi]3+Z > Dijzliﬁzlji):|'
ies ies j\{i}es
(2) The estimators of V, ()A’g REG.R) are given by
1 5\
> (1-p) il liXiPr when p is known
A A% P ies
Vo(YGreG.R)= , (49)
A \2
A 1-p . 1 X!
Ezﬁ-i-( Ap)zr—l é+— iXib , when p is unknown
P ies i Nies 4

ies 7T

ies "1

-1 A
. A 1 ). . A X!
where szzr_l[Zij , ZZip :ﬁ r;l.):l _#Wi — Lxl{ﬂr_ _ Zr;ﬂl-ﬂrj’

Z2if7 =

izﬁ .
i riyi__Nies_ i Ui n 1 Zrzxz’ﬂr
N| p w ! ’

A 2 Y A A A
E2p=N [ZDiZZip_'_Z Z DijZZipZij]’

ies ies j\{i}es
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. 5 A an A A A
Eyp=N (ZDI'ZMH‘Z > DijZ2ii)Zij7J
les

ies j\{i}es
Proof.

Recall from equation (41) that the estimators of V,, (YA'(; REG.R) are defined by

~ A~ N A 1 (l p ) — 2

52 '

Vm(YGREG.R)zZV2 thZ +z Z ij mt mj Z ( i+Xﬂ) . (50)
ies ies j\{i}es (p ) jes 7%

where m=1,2, Z i is the estimator of Z,; forall i€s, D =(1-r; )7r

-1
N 1 * * ~ . 1
Dy =(m7; - l])(ﬂ'ﬂ']ﬂ]) , p =p if p isknown otherwise p :pzzr—’ >—1 .
’ ies i \ies i
A A 14 xx'
oy . 4o g (520 () (o)
ies ;P ies ﬂ'p ies ﬂl ies 7T
. 1 rx\B
X!ﬂ:_z itilPr
Npies 7T
(1) If m=1and p is known then "= p and the estimator of Z; is given by
p p p li
i hidiXi)i Y Ui A "p
N.=) —and ¢ =y;-Xx; 52
=29 (S o =y, )

Substituting equation (51) and equation (52) into equation (50), then

5 ok 2 1 a- P) Els o)
VI(YGREG.R)zN ZDZIZ +z Z DZJZIIZIJ z_l(€i+Xﬁ)
ies ies j\{iles N P 7

ies ‘i
1 1 3 Y
=E1p+(__2p)zi éi"'N_ZM , (53)
p ies i Pics T
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where £, = NZ(ZDZII+Z 3 DZthj}

ies ies j\{i}es

If m=1and p is known, then

1-
P orson)~bip+ L 5 ( sz””rj

p ies ® jes i

Next, if m=1and p is unknown, then

p ies 7% ies i

)
A oAk A p) . 1 orxp
Vl(YGREG.R)zElﬁ > [e WZZ . r] ,

-1

v 1
where p=7’ ’(Z—} .
IGS” 1697[

From equation (54) and equation (55), we may write

A \2
-~ (-p) Zi(éi +LZM when p is known
2 4

o E1p+ P’ i Np ies T
N(YoreG.R)=
)
. 1- 1 X/
E. +( 12 zr_l . TZM when p is unknown
1p ﬁ 4 ﬂ'l. ! Np . ﬂ'l'
ies 1€S

(2) The proof of (2) is similar to (1).

(54)

(55)

(56)

If the sampling fraction is small, term ¥, in equation (22) can be omitted. The variance of the

proposed GREG estimators V) ();g REG.R ) and V, (?G* REG.R ) can be obtained in Corollary 3 and

the estimator of the 7} (I}é REG.R ) and V), (I}G*R EG.R ) can be obtained in Corollary 4.

Corollary 4. Under the reverse framework with unequal probability sampling without replacement.
Assuming that (4;) to (4;) are satisfied and the sampling fraction is negligible. The variance of

the proposed GREG estimators is given by

ieU ieU j\{iteU

Vl(I}G*REG.R)z(NP)2 ( > D, (61-)2 +> > DijeiejJ ,
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Vz(?éREG_RMNp){ZDi(ei—é>2+z > Dyle—e)e; —E)J, (58)

ieU ieU j\{iteU

_ 1
where ¢;=y;-x/ff and e=— > ¢; .
ieU

Corollary 5. Under the reverse framework with unequal probability sampling without replacement,
assuming that (A4;) to (43) are satisfied and the sampling fraction is negligible. The variance
estimators of the proposed GREG estimators are given as follows.

(1) The estimators of Vl(f’G* REG.R) are given by

NZ[ZﬁiZAIZI-p 0 DAU-ZAUPZAUP}, when p is known

I}I(YG*REG.R)Z ies ies j\{ijes ’ (59)
2 A 52 NS5 .
N [ZDI'ZU;}JFZ > Dl_.jle-i,leﬁ}, when p is unknown
ies ies j\{i}es
I 1 B Ny N ¥
where p=S 1| S — | | Z. =p| L2 _x'p |, Ziw=r| 2L x|,
p leZi ; {E ”i] lip 1[ Np zﬂrj lip =% [ Np zﬂrJ
. ,a . 7
i =Yi-X;B, and N, :Z;-
ies i
(2) The estimators of 1, ()A’G REG.R) are given by
NZLZQ-ZAZZW 0 DAijZAZipZAsz] ,  when p is known
ies ies j\{i}es (60)

ies ies j\{i}es

Va(YgreG.R) =
Nz[Zlﬁiizziﬁ +2 2 ﬁUZZii)szﬁJ , when p is unknown

1

) iz”;yl .

7 1Y 4 1|ry, N« r; A 1 rx.p

where p=> L > — | | Zy, =—| L——LLw |- X[ f, —— > L
P E”(Eﬁl] 2ip N P W i Nr( iPr N Z

and
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~ — ~ S

Lzrzyl .

. 1|y, N« N A 1 rx.f
Zaip =~ A_IETIWi L x-S |

p N, N, ies 7

3.2 Simulation studies

To see the performance of the proposed GREG estimators compared to the Lawson and Ponkaew
[6] estimators. A linear model y, = )+ B,x; + B,k; + Byw; +&; was used to generate the study variable
y; with population size N = 5000, where x; ~N(150,5), k;~N(100,5), w;,~N(180,10),
&~NO,1), B=(By. 51,5, 84) = (250, 3.10, 1.5,-4.21)" and i=1,2,...,N. Samples of
sizes n=100, n=150 and n=500 were selected using unequal probability sampling without

replacement with Midzuno’s [13] scheme. Under Midzuno’s [13] scheme, the first and second order
of inclusion probabilities are defined by

ki( N-n) n-1
”f_E(N—lj’LN—l’ (61)

ki+k; \(N—n\( n—-1 n=1\ n-2
| _t J
7%;;—( K J(N—IJ(N—zj-{N—lj(N—zj' (62)

We considered three levels of response; 50%, 70% and 85% in the simulation study and
repeated the study 10,000 times (M=10,000). The relative bias (RB) and the relative root mean
square error (RRMSE) were used as criteria to compare the performance of the proposed estimators
with the Lawson and Ponkaew [6] estimators. The relative bias and the relative root mean square

error of the GREG estimator (?GR £G.m) and the variance estimator (V,,(Ygrpg)) are given as

follows.
. E(, -Y

RB(Y):%, m=1,2,...M, (63)

| Mo 5

A " 2 Yoregm=Y)
RRMSE(Y)=1—"1 % : (64)

N a E (Vm(YGREG))_V(YGREG)

RB(V,, (Yorzc )= , m=12,..,M, (65)

V(Ygrec)
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1 M .
e Mol Z_:I(Vm(YGREG)_V(YGREG) )
RRMSE(V,, (YG REG )) = = o . (66)

The results are shown in Tables 1 to 3. Table 1 shows that the proposed GREG estimators

with the benefit of the ratio estimator performed well in terms of both minimum relative bias and
. A%

relative root mean square error for all situations. The proposed GREG estimator, Ysppq p gave a

smaller relative bias and relative root mean square error for both when p is either known or

unknown. Tables 2 and 3 showed similar results to Table 1 where the proposed variance estimators

both I}I(XA’G*REG. g) and 1}2 ()A’(’;REG.R) performed well. They gave a smaller relative bias and a

smaller relative root mean square error when compared to the existing Lawson and Ponkaew [6]
estimator in all situations. We can see that using an auxiliary variable that was related to the study
variable increased the efficiency of the estimator by using the ratio estimator for estimating
population total.

Table 1. The relative bias and relative root mean square error of the GREG estimators

Response  Sample  The response Relative bias Relative root mean
rate (%) size probability p square error
Lawson Proposed Lawson Proposed
and and
Ponkaew Ponkaew
0.5 100 p is known 0.0283 0.0274 0.0544 0.0432
P is unknown 1.0208 1.0002 1.0444 1.0051
150 p is known 0.0211 0.0207 0.0434 0.0428
P is unknown 1.0137 0.9991 1.0277 1.0041
500 p is known 0.0200 0.0190 0.0421 0.0410
p is unknown 1.0128 0.9981 1.0056 1.0038
0.7 100 p is known 0.0201 0.0181 0.0467 0.0421
P is unknown .04400 0.4325 0.4716 0.4385
150 p isknown 0.0200 0.0172 00371 0.0369
p isunknown (4369 0.4270 0.4388 0.4312
500 p is known 0.0012 0.0010 0.0171 0.0169
P isunknown () 496 0.4265 0.4319 0.4298
0.85 100 p is known 0.0032 0.0028 0.0171 0.0165
P is unknown 0.4296 0.4285 0.4319 0.4298
150 p is known 0.0027 0.0021 0.0118 0.0110
P is unknown 0.1780 0.1767 0.1840 0.1815
500 p is known 0.0027 0.0021 0.0118 0.0110
P is unknown 0.1780 0.1767 0.1840 0.1815
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Table 2. The relative bias of the variance estimators

Response Sample The response Relative bias
rate (%) size probability p
Method 1 Method 2
Lawson Proposed Lawson  Proposed
and and
Ponkaew Ponkaew

0.5 100 p is known 1.9244 1.1574 1.9161 1.1472
P is unknown 1.9305 1.1595 1.9338 1.1587

150 p is known 1.3357 1.1350 1.4447 1.1345

P is unknown 1.3956 1.1374 1.4624 1.1372

500  p isknown 1.1345 1.0210 1.3387 1.1287

D is unknown 1.1983 1.0251 1.3950 1.1290

0.7 100 p is known 0.9726 0.4842 1.8690 0.4601
P is unknown 0.9941 0.4848 1.8780 0.4613

150 p is known 0.7713 0.4601 1.0420 0.4542

P is unknown 0.7912 0.4613 1.0457 0.4548

500 p isknown 0.6780 0.4514 1.0396 0.4317

P is unknown 0.6896 0.4583 1.0420 0.4320

0.85 100 p is known 0.4038 0.1965 1.1195 0.1965
P is unknown 0.4164 0.1967 1.1207 0.1967

150 p isknown 0.3150 0.1850 1.0411 0.1890

P is unknown 0.3280 0.1890 1.0418 0.1898

500  p isknown 0.2352 0.1775 1.0318 0.1681

P is unknown 0.2370 0.1784 1.0325 0.1690

3.3 Application to real data

To see the performance of the proposed estimators, we used the data from the Thai maize
agricultural industry in Thailand in 2019 from the Office of the Agricultural Economics. A sample
size of 25 provinces was selected according to the unequal probability sampling without replacement
method using Midzuno’s [ 14] scheme from a total of 63 provinces with a 70 percent response. Then,

p;=p=0.7 for all i=1,2,...,63 and we generated the nonresponse indicator 7; using
r~rbern(p) in the R program (R Core Team (2021)). We computed the value of the estimators

-1

and their variance estimators for n=25 and then the value of f)z(Zriﬂi_l][Z ﬂ;l] was
ies ies

equal to 0.71. The study variable ¥ was the yield of maize in 2019, the auxiliary variables x and

w represented the cultivated area and the harvest area in 2019, respectively, and the size variable

k was the cultivated area in 2018. The average cultivated area and harvest area in 2019 were 1,510

and 1,492 acres, respectively. The results are displayed in Table 4.
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Table 3. The relative root mean square error of the variance estimators

Response Sample The response Relative root mean square error
rate (%) size probability p
Method 1 Method 2
Lawson Proposed Lawson and Proposed
and Ponkaew
Ponkaew

0.5 100 p isknown 1.8925 1.3449 1.3410 1.3249
P is unknown 1.9957 1.3534 1.3899 1.3531

150 p isknown 1.4426 1.2399 1.2564 1.2009

P is unknown 1.4962 1.2397 1.2685 1.2081

500 p isknown 1.3867 1.1228 1.1118 1.1115

P is unknown 1.3900 1.1320 1.1290 1.1277

0.7 100 p isknown 1.0084 0.5239 1.0580 0.5270
P is unknown 1.0190 0.5278 1.1865 0.5304

150 p isknown 0.8334 0.5200 1.0457 0.6329

P is unknown 0.8356 0.5218 1.1193 0.5245

500  p isknown 0.7341 0.5122 1.0385 0.5108

P is unknown 0.7966 0.5191 1.0393 0.5140

0.85 100 p isknown 0.3668 0.2577 0.8957 0.2577
P is unknown 0.3748 0.2587 0.8964 0.2581

150 p isknown 0.3270 0.2389 0.8527 0.2378

P is unknown 0.3380 0.2404 0.8643 0.2400

500 p isknown 0.3168 0.2175 0.7438 0.2142

P is unknown 0.3245 0.2287 0.7548 0.2179

Table 4. The total yield of maize estimates for all provinces and variance estimates for the total
yield

Estimator Total yield of maize Variance estimates
estimates for all provinces
1. Lawson and Ponkaew 544,317 V(Y —584.868.293
estimator Al ( FRE G.Lp) ’ ’
2. Proposed estimator 525,124 I}l(}’}G*REGR):476,754,210

Vo(YVorpe.r)=455,864,312

Table 4 shows the estimated total yield of maize for all provinces in Thailand and the
estimated variance for the total yield of maize. We can obviously see that both of the proposed

. ' A Ak Nk .
variance estimators, Vi (Ygppg.r) and Vo (Ygrec.r) > €ave a lot smaller variance when compared

to those of the Lawson and Ponkaew estimators in this yield of maize data set. The proposed
estimators performed very well in terms of minimum variance.
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4. Conclusions

Using a ratio to estimate population total and population mean increased estimator efficiency. New
generalized regression estimators for estimating population total using ratios were proposed under
unequal probability sampling without replacement in the presence of nonresponse. The variances of
the proposed GREG estimators were also studied under two different methods. We followed the
method of the Lawson and Ponkaew [6] estimator whereby the GREG estimator was considered
under a uniform response mechanism. The proposed GREG estimators using ratios to estimate
population total outperformed the existing Lawson and Ponkaew [6] estimators in both simulation
studies and application to real data.

For simplicity, the nonresponse mechanism is uniform although it is quite restricted
because it increases the efficiency of population total estimation. Overall, it outperforms existing
estimators. The proposed GREG estimators and variance estimation can be useful in many areas of
study and can help with forward planning. The estimators can improve estimates and thus decision
making and yield, e.g., total yield, total profit, total number of unemployed people, and total number
of patients infected by a virus. Effective decision making can improve economic wealth for the
whole country. In future studies, we intend to extend the proposed GREG estimators using a ratio
method of estimation for estimating population total and population mean for use in more flexible
situations, e.g., when the nonresponse mechanism is not uniform, and we also plan to apply them in
more complex survey designs in the presence of nonresponse.
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