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Abstract 

 
In this research, an approach to extract buildings from Google's satellite imagery was 
proposed. The performances of various deep learning models (U-Net, RIU-Net, U-Net++, 
Res-U-Net, and DeepLabV3+) on pre-processed datasets were compared. The models 
were trained using the similarity metrics of Intersection over Union (IoU) and Dice Similarity 
Coefficient (DSC). The best-performing models among the segmentation techniques were 
Res-U-Net and DeepLabV3+. Res-U-Net, an enhanced version of the traditional U-Net 
model that incorporates residual connections for improved feature propagation, achieved 
an F1 score of 85.43% when using the RGB dataset. Similarly, DeepLabV3+ also achieved 
high performance on the Enhanced RGB dataset, obtaining an F1 score of 85.18% after 
applying pre-processing techniques. This research highlights the significance of color as a 
dominant feature for accurate building extraction from satellite images. The findings 
contribute to improved methodologies for building identification, benefiting urban planning, 
and disaster management applications. 
 
Keywords:  building extraction; deep learning; image processing; satellite imagery; 
semantic segmentation 
 

1. Introduction 
 
The extraction of building areas from satellite imagery has wide-ranging applications in 
both public and private sectors. It serves diverse purposes, including monitoring residential 
expansion, estimating population based on growth rates and housing sizes. In some 
countries, population censuses are conducted every decade; however, these surveys had 
to be canceled or postponed due to the inability to carry out fieldwork caused by the 
COVID-19 pandemic. This unprecedented situation has posed challenges in gathering 
accurate population data. Recently, satellite imagery technology has undergone significant 
advancements (McCarthy & Halls, 2014), resulting in the improved capture, recording, and 
storage of high-quality images of Earth's surface. These images span various time periods 
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and cover extensive global regions, regarding permissible boundaries for image 
acquisition. Access to such high-resolution (Boyle et al., 2014), satellite imagery is 
facilitated by multiple service providers. For this study, Google's imagery, for which 
permission has been granted for academic and research purposes, was used as the 
dataset. 

The elements captured in satellite imagery vary based on the location and 
geography of the area. These elements include buildings, forests, barren lands, agricultural 
areas, roads, and others. There are certain challenges associated with satellite imagery 
such as differences in image quality that present due to varying time intervals among 
satellite orbits, which result in inconsistent color representation. Additionally, the availability 
of data has led to variations in satellite imagery data recorded over different years for the 
same area. Furthermore, the presence of cloud cover can obscure the clarity of the surface. 
Consequently, manually extracting specific locations and structures of buildings is time-
consuming, costly, and prone to human error. Therefore, this research presents an 
automatic method for extracting building areas from satellite imagery. 

This research study utilized satellite imagery from various areas in Thailand that 
faced the COVID-19 pandemic. The pandemic resulted in the postponement of the 2020 
census. The study specifically focused on regions distant from the capital city that included 
a lot of rural landscapes. During the examination of multiple areas, it was observed that 
buildings exhibited variations in architectural design, roof color, size, and materials. 
Additionally, the presence of tall trees close to the buildings often obscured roof areas and 
resulted in indistinct shapes. However, the factors of color and light intensity generally 
facilitated clear differentiation between the buildings and the surrounding natural 
environment. 

The primary objective of this research was to leverage satellite imagery when 
constructing a comprehensive dataset that facilitated the extraction of building boundaries. 
The methodology included a strong emphasis on a comparative analytical approach, 
beginning with the division of the image dataset into two categories: the original image 
dataset and the pre-processed image dataset. Subsequently, the data were fed into various 
deep learning models encompassing the prominent architectures: U-Net, RIU-Net, U-
Net++, Res-U-Net, and DeepLabV3Plus. In addition, backbone experiments were 
conducted using ResNet-50, ResNet-101, and ResNet-152, which further enhanced the 
analysis and performance of the models. 

With a focus on methodologies for building identification in satellite imagery, 
preprocessing techniques to enhance segmentation accuracy were developed and refined. 
A significant aspect of this work was the application of these methodologies to a unique 
dataset analyzed alongside four pre-processed variations, to discern the most effective 
configurations for precise building detection. The dataset, consisting of high-resolution 
satellite imagery from a specific region, was pivotal for evaluating the impact of various 
preprocessing strategies on segmentation performance. While new models were not 
introduced, the emphasis on methodological enhancement through strategic 
preprocessing represented a substantial step towards more reliable and effective 
segmentation outcomes. The creation and use of this meticulously labeled dataset 
highlighted the study's contribution to advancing image segmentation techniques. 

The application of various techniques for extracting building areas from satellite 
imagery has been extensively studied and explored. These techniques encompass a range 
of approaches, including image processing methods, the utilization of deep learning 
algorithms, and the integration of image processing and deep learning frameworks. 
Therefore, the following section presents a thorough review of relevant literature concerned 
with these processes. 
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Process and techniques for extracting buildings from satellite imagery using 
mathematical morphology were presented by Gavankar and Ghosh (2018). Although the 
entire process did not involve the use of deep learning, the researchers highlighted the 
interesting aspects of the pre-processing and post-processing steps and the application of 
morphological operations to modify the basic characteristics of building structures. 
Specifically, the proposed technique incorporated a morphological top-hat filter and the K-
means algorithm to extract buildings with bright and dark rooftops. By separately extracting 
segments of buildings with different rooftop characteristics and subsequently merging 
them, the final output consisted of accurately extracted building segments. In addition, 
post-processing steps to mitigate false detections were proposed to set up an appropriate 
threshold range for building area based on the characteristics of the study area. However, 
it was noted that the specific threshold range might have varied depending on the resolution 
of the satellite imagery and the urban scenario under investigation. 

Previous studies have identified limitations in various areas, particularly when 
dealing with satellite images that contain dense natural components. These challenges 
hinder the efficiency of image processing methods for building extraction. An example of 
research emphasizing these findings is the study by Daranagama & Witayangkurn (2021). 
The study presented a methodology for extracting building footprints from high-resolution 
aerial and UAV imagery. The approach incorporated data pre-processing techniques and 
dataset merging to enhance accuracy and usability. Modified U-Net architecture and 
specific pre-processing techniques were applied to their dataset. A logarithmic correction 
image enhancing algorithm, which was applied to pre-processing steps, significantly 
improved building detection accuracy for aerial images, while the Contrast Limited Adaptive 
Histogram Equalization (CLAHE) algorithm proved effective for enhancing UAV images. 

Recent research studies have explored the application of U-Net for building 
extraction from aerial satellite images. Ivanovsky et al. (2019) adopted the novel approach 
of categorizing the dataset into “Buildings” and “Not Buildings” to train the model. Results 
were compared with LinkNet, revealing U-Net's superior performance in terms of output 
quality. The Sorensen-Dice Coefficient was used to evaluate the effectiveness of the 
experiment, and the results indicated a coefficient value of 77%. Additionally, U-Net was 
widely applied in the research for building extraction from satellite imagery, with notable 
success compared to LinkNet. 

Chhor et al. (2017) proposed the application of a Convolutional Neural Network 
(CNN) based on U-Net architecture, originally designed for biomedical image 
segmentation, to extract buildings from satellite imagery. The focal aspect was the 
implementation of data augmentation and the application of evaluation metrics, specifically 
the Jaccard Index and Dice Coefficient, which yielded scores of 59% and 74%, 
respectively. However, the study did not employ any post-processing techniques. 

Apart from the recent applications of U-Net for automatic building extraction, new 
concepts regarding the development of the model's architecture to enhance feature 
extraction efficiency in the encoder part of the original model were explored. Sariturk & 
Seker (2022) presented the utilization of Residual-Inception. The research findings 
indicated that RIU-Net achieved the best results with the Inria dataset compared to several 
other models such as U-Net, Residual U-Net, and Trans U-Net. Therefore, how the RIU-
Net concept performed with the provided data and methodology became worthy of study.   

The concept of improving the encoder in building extraction from satellite images 
has been explored in various research studies. One engaging approach is the integration 
of Residual Network (ResNet) architectures into the U-Net framework, named Res-U-Net. 
This modification incorporates residual connections to enhance information flow and 
gradient propagation during training. In the research study proposed by Xu et al. (2018), 



Chueprasert et al.       Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 1), e0260846 
 
 

4 

Res-U-Net incorporating ResNet and guided filters in post-processing achieved high 
accuracy with overall accuracy (OA) values of 97.71% and 96.91% on the Vaihingen and 
Potsdam datasets, respectively. Similarly, in the study proposed by Alsabhan et al. (2022), 
U-Net with ResNet as the backbone architectures were combined to help extract buildings 
and the results indicated improved performance compared to the original U-Net, as 
evaluated by Intersection over Union (IoU) and Dice Coefficients. Next, a research study 
proposed by Alsabhan & Alotaiby (2022) demonstrated that using ResNet50 and 
ResNet152 as backbone architectures led to better results than using the original CNN. 

The application of CNN has also been discovered in another interesting model, 
namely DeepLabv3+. Several research studies utilized DeepLabv3+ for building extraction 
processes, using both aerial photography and satellite imagery. These studies achieved 
results that were comparable to U-Net with encoder modifications. For instance, Aslantaş 
et al. (2021) presented a technique for building extraction using DeepLabv3+, which 
employed a similar architecture to the original model. The experiments focused on tuning 
hyperparameters to achieve the best results for the Wuhan University (WHU) aerial 
building dataset. The results of this research indicated a high accuracy in prediction, with 
an IoU of 98.23%. Additionally, the study proposed by Han et al. (2022) aimed to enhance 
the performance of building extraction by addressing issues such as slow extraction speed 
and incomplete edge segmentation. This was achieved through modifications to the 
backbone and the space pyramid pooling module. In the experiments, the proposed 
method was compared with other prediction models, including U-Net, SegNet, PSPNet, 
and DeepLabV3+, using two datasets: WHU and Massachusetts. The results revealed that 
the proposed method outperformed the others.  

It is worth noting that U-Net and DeepLabV3+ have been often mentioned in 
research on deep learning models for semantic segmentation in building extraction. For 
example, in the research proposed by Bakirman et al. (2022), an improved U-Net++ 
architecture utilizing an SE-ResNeXt101 encoder pre-trained with ImageNet was invented. 
Their extensive experiments were conducted to compare various encoders and optimizers 
and the results revealed IoU accuracies of 75.39% and 92.53% on the Inria and 
Massachusetts datasets, respectively. 

Considering the limitations of traditional image processing in accurately 
segmenting buildings from satellite images, particularly in varied rural and suburban 
landscapes, this study pivoted to deep learning models known for their segmentation 
capabilities. The choice of U-Net, RIU-Net, U-Net++, and Res-U-Net was informed by their 
success in detailed segmentation tasks, where precision was paramount. Each of these U-
Net variants introduces enhancements to the original architecture, RIU-Net for rotational 
invariance, U-Net++ for nested, dense skip pathways, and Res-U-Net for incorporating 
residual learning to better capture the complex spatial relationships in satellite imagery. 
DeepLabV3+, distinct from the U-Net family, was included for its effectiveness in utilizing 
pre-trained models such as ResNet, which are pre-trained on ImageNet, offering a robust 
framework for multi-scale feature extraction. The adoption of models capable of integrating 
pre-trained weights was aimed at leveraging vast amounts of learned features from diverse 
visual domains, enhancing model performance even before fine-tuning on our specific 
dataset. This strategic selection, discussed later in this paper, underscored the foundation 
of our methodology, with its focus on addressing the nuanced challenges of satellite-based 
building segmentation. 
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2. Materials and Methods 
 
A comprehensive methodology is presented, starting with data acquisition and labeling, 
data preparation techniques such as data augmentation and preprocessing. This is 
followed by deep learning models and their implementation methods. The evaluation 
process is also reported in this section. Process overview diagram is shown in Figure 1. 
 

 
 

Figure 1. Process overview diagram 
 
2.1 Study area and dataset 
 
This research was focused on the collection of satellite imagery data in remote and 
geographically challenging mountainous areas that were primarily characterized by dense 
forested terrain. This led to challenges and issues encountered in planning, management, 
and development for both government and business sectors. For instance, remote areas 
often present difficulties in conducting population censuses due to limited accessibility and 
the high costs associated with transportation infrastructure challenges. Consequently, the 
predominant landscape of these areas typically comprises a juxtaposition of forested 
regions and human-made structures. 

In this study, Loei Province in Thailand was selected as the focused area. The area 
represented a geographically and contextually relevant experimental site that adhered to 
geographical principles and was an appropriate one for addressing the challenges. The 
province holds the distinction of being a border region adjacent to Laos, further contributing 
to its unique characteristics. The selected experimental area is situated within a specific 
subdistrict, which exhibits a relatively higher population density compared to the urban core 
area. This geographical region is approximately bounded by latitude 17.59° to 17.69° N 
and longitude 101.67° to 101.81° E, covering an area of approximately 128.50 square 
kilometers. 

The dataset utilized in this research comprised high-resolution satellite images 
obtained from the Google Earth (Google, 2022). It is acknowledged that previous studies 
also employed satellite imagery for similar purposes (Wen et al., 2019; Zhang et al., 2021; 
Chen et al., 2023). To collect the data, the SAS.Planet tool (GIS English, 2023), which 
facilitates the extraction of imagery from specified areas of interest, was used. The dataset 
consists of 590 color images, each with dimensions of 517 x 517 pixels and a spatial 
resolution of 0.6 m, equivalent to a 19x magnification of the original data provided by the 
data provider. 

To facilitate subsequent analysis, the labeling process, specifically focusing on 
identifying building rooftops within the images, was manually conducted. The resulting 
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labels represented binary masks or ground-truth data, preserving the same dimensions as 
the original images (517x517x1). In these labels, areas corresponding to buildings were 
represented by white color, while non-building areas were represented by black color as 
shown in Figure 2. After a thorough examination and label creation for each image, the 
dataset was divided into two distinct groups. The first group consisted of images containing 
at least one building rooftop, while the second group comprised images without any 
building rooftops. The total number of images in these two groups were 294 and 296, 
respectively. Focusing on this area, we sought to contribute to the scientific understanding 
of remote and challenging environments. The selected area served as a representative 
case study that aligned with geographical principles and addressed pertinent issues in a 
comprehensive manner. 

 

 
 

Figure 2. Example of satellite imaged for Area A (community), Area B (suburban), and 
Area C (agricultural), each with corresponding ground truth labels 

 
The data collection approach in this study was different to approaches used in 

previous research as we personally gathered both the data and mask labels. However, this 
introduced a limitation for the learning process of the models as the data set was relatively 
small. Thus, a direct and precise comparison of the data with evaluation outcomes from 
other studies was not feasible. Nonetheless, experimental findings revealed that even with 
self-collected images, the deep learning models proved effective in tackling the task of 
building extraction from satellite imagery. 
 
2.2 Data preparation 
 
The dataset was divided into two groups: images containing buildings and images without 
buildings. To mitigate potential issues of biased training or overfitting towards a specific 
class, a random Train-Test Split technique was employed, allocating the data in a 70:30 
ratio. Specifically, 70% of the dataset, comprising 413 images from both groups, was 
assigned for training purpose, while the remaining 30%, consisting of 177 images from 
both groups, was set aside for testing. This rigorous partitioning strategy was aimed at 
ensuring a balanced distribution of samples and facilitation of reliable evaluation of the 
model's performance. 
 
2.2.1 Data preprocessing 
 
The initial pre-processing technique applied in this study was image resizing, specifically 
the reduction of image dimensions. The purpose was to decrease the computational 
requirements and training time. Both the train set and test set underwent this image resizing 
process, which transformed the images from their original size of 517x517 pixels to a 
reduced size of 256x256 pixels. This technique was implemented to optimize the training 
process while preserving the key features and relevant information within the images. In 
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the subsequent stage, our objective was to explore the influence of pre-processing image 
quality prior to its utilization in the learning phase and its impact on the learning process 
and prediction outcomes. In a previous research study, Lin et al. (2017) showed the 
effectiveness of pre-processing image quality enhancement techniques, which 
demonstrated superior performance compared to the cases without enhancements. 
Therefore, a series of experiments was conducted in this research wherein different pre-
processing steps were applied to datasets to create distinct dataset variations that were 
characterized by the following specifications:  

a) RGB Color Image Dataset: This dataset comprised the original images resized 
to the dimensions of 256x256x3. 

b) Enhanced RGB Color Image Dataset: In this dataset, RGB color images were 
further enhanced by applying the gamma correction technique. A fixed gamma value of 
0.75 was experimentally chosen, resulting in darker image shades. This adjustment was 
aimed at addressing the fact that natural outdoor environments generally exhibit less light 
reflection compared to the rooftops of buildings. Subsequently, the images underwent a 
color balance process, specifically adjusting the CIELAB color channel values 
(International Commission on Illumination, 2012). This modification was motivated by the 
human perceptibility of CIELAB color values (Rosentrater & Evers, 2018), which are closely 
related to the digital RGB color values. Hence, an additional hypothesis was stated that if 
humans were able to identify buildings more easily in the images, the learning model might 
also exhibit improved predictive performance. Finally, the images were subjected to an 
unsharp masking process, combining Gaussian blur (Gedraite & Hadad, 2011) and 
weighted image adjustment techniques (Li et al., 2014). Consequently, the images 
underwent contrast stretching to improve the overall contrast and dynamic range. 

c) Grayscale Image Dataset: This dataset involved converting the RGB color 
images to grayscale in the dimensions of 256x256x1. 

d) Enhanced Grayscale Image Dataset: In this dataset, the grayscale images were 
enhanced using the unsharp masking technique to increase image sharpness. Additionally, 
Contrast Limited Adaptive Histogram Equalization (CLAHE) (Vidhya & Ramesh, 2017) was 
applied to improve the distribution of contrast differences. 

By following this approach, the train and test sets were utilized to create the four 
datasets as shown in Figure 3. 

 

 
 

Figure 3. Comparison of different datasets for building extraction 
 
2.2.2 Data augmentation 
 
Due to the constrained size of the learning dataset, the researchers aimed to overcome 
this constraint by utilizing data augmentation techniques. A previous study by Shorten & 
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Khoshgoftaar (2019) explored data augmentation using various color manipulation 
methods and other methods. However, this specific investigation focused on pre-
processing techniques that entailed segmenting the dataset based on color values. 

The augmentation strategies selected for implementation included two principal 
transformations: rotation and flipping. Rotation was applied to each image in the dataset in 
two distinct orientations; this involved a 90-degree rotation both clockwise and 
counterclockwise. This rotational augmentation was designed to ensure the model's 
invariance to the orientation of objects within the satellite imagery, thereby increasing its 
adaptability to diverse spatial configurations. Concurrently, flipping augmentation was 
executed along both the vertical and horizontal axes. Vertical flipping inverts the image top 
to bottom, while horizontal flipping mirrors the image along its vertical midline. These 
flipping operations further contributed to the model's resilience against variations in 
perspective and alignment, simulating a wider range of viewing angles and spatial 
arrangements.  

Consequently, these strategies markedly improved the model's capacity for 
generalization across unfamiliar datasets. Such an approach guarantees that, despite 
alterations in the physical appearance of images through rotations and flips, the semantic 
content and contextual integrity are maintained. This methodology permitted the model to 
derive insights from an augmented, yet consistently meaningful dataset. The outcome of 
these transformations yielded a dataset of 2,065 images for the learning process. Figure 4 
showcases illustrative examples of these transformations. 

 

 
 

Figure 4. Comparison of data augmentation techniques: flip and rotate 
 
2.3 Methods 
 
The aim of this research was to compare and evaluate the prediction performance of deep 
learning models, namely U-Net, RIU-Net, U-Net++, Res-U-Net, and DeepLabV3+. These 
models have been widely studied and applied in various fields. Our focus was on extracting 
buildings from specific areas of interest. With respect to Res-U-Net, it stood out with its 
incorporation of a backbone architecture. Additionally, DeepLabV3+ was used in the 
comparison due to its distinct architectural characteristics. 
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2.3.1 U-Net  
 
U-Net is a convolutional neural network architecture that was originally introduced for 
biomedical image segmentation, specifically targeting the segmentation of neuronal 
structures in brain tissue (Ronneberger et al., 2015). It comprises an encoder pathway for 
capturing contextual information and a decoder pathway for precise localization, facilitated 
by skip connections that enable the fusion of low-level and high-level features. Due to its 
exceptional performance in segmentation tasks, U-Net has gained popularity and been 
successfully applied across diverse domains, extending beyond medical imaging. 

Building on its foundational design, U-Net's encoder-decoder architecture is 
intricately designed with convolutional layers, interspersed with max pooling for down-
sampling and transposed convolutional layers for up-sampling, facilitating detailed feature 
extraction and spatial information preservation. The integration of ReLU activation 
functions introduces necessary non-linearity. Skip connections, a hallmark of U-Net, bridge 
the gap between encoder and decoder, ensuring high-resolution features are directly 
propagated across the network, which is essential for accurate segmentation. Training U-
Net often involves tailored loss functions, like the Dice Coefficient, to directly optimize for 
segmentation performance, alongside techniques like dropout and batch normalization to 
enhance model generalization. 

Moreover, U-Net's pioneering approach to leveraging extensive data augmentation 
has notably expanded its utility in medical imaging, addressing the challenge of limited 
annotated datasets. Furthermore, its adaptable framework has spurred the development 
of numerous variants, each enhancing U-Net's foundational strengths to cater to specific 
segmentation needs or improve overall performance. This legacy of innovation 
underscores U-Net's significant impact on the field of image segmentation, propelling 
advancements across both medical and non-medical applications. 
 
2.3.2 RIU-Net  
 
RIU-Net, or Residual-Inception U-Net, is an advanced adaptation of the U-Net architecture, 
where the integration of the Residual and Inception modules serves to enhance feature 
extraction performance (He et al., 2016; Sariturk & Seker, 2022). Residual module 
contributes to gradient propagation, facilitating effective information flow (Alom et al., 
2019), while Inception module facilitates the detection of multi-scale features. Both the 
encoder and decoder pathways of RIU-Net benefit from the application of these Residual 
and Inception modules. 

Diving deeper into RIU-Net’s architecture, the Residual modules help mitigate the 
vanishing gradient problem, allowing for deeper network constructions without loss of 
performance. Meanwhile, the Inception modules, by processing data through multiple filter 
sizes simultaneously, capture a broader range of spatial information, enhancing the 
model's ability to recognize features at various scales. This combination not only improves 
segmentation accuracy but also increases the model's robustness to variations in input 
image sizes and shapes.  

Additionally, RIU-Net's design optimizes computational efficiency, making it 
suitable for processing of large datasets in high-resolution imaging applications. By 
inheriting U-Net's flexible architecture and incorporating these sophisticated modules, RIU-
Net represents a significant leap forward in the field of image segmentation, promising 
improvements in both precision and scalability. 
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2.3.3 U-Net ++ 
 
U-Net++ extends the U-Net architecture by introducing nested and dense skip connections 
to capture features at multiple scales and enhance information flow within the network 
(Zhou et al., 2018). By incorporating these connections, U-Net++ effectively leverages 
hierarchical features, enabling it to capture and utilize rich contextual information. 

Further dissection of U-Net++'s design reveals its unique skip pathway 
architecture, which differs from the traditional U-Net by allowing for more flexible feature 
fusion across different levels of the network. This is achieved through its nested and dense 
skip connections that facilitate more effective integration of low-level detail with high-level 
semantic information, significantly improving the accuracy of segmentation tasks. The 
design of U-Net++ not only enhances feature extraction capabilities but also introduces 
redundancy reduction, which streamlines the model's learning process.  

As a result, U-Net++ demonstrates improved performance on a variety of 
segmentation tasks, showing promise in areas requiring fine-grained detail recognition, 
such as satellite image analysis. The adaptability and improved efficiency of U-Net++ make 
it a valuable tool for researchers and practitioners seeking to push the boundaries of image 
segmentation accuracy and performance. 
 
2.3.4 Res-U-Net  
 
Res-U-Net entails the fusion of the fundamental architecture of U-Net with a pre-trained 
backbone network, exemplified by ResNet (employed as a case study in this research), as 
its encoder (Diakogiannis et al., 2020). This strategic amalgamation yields enhancements 
in the efficacy of feature extraction, facilitating the comprehensive capture of both low-level 
and high-level features. Significantly, this approach affords the flexibility to adapt and fine-
tune the pre-trained weights and backbone, thereby mitigating the constraints imposed by 
the input characteristics during the learning process. 

In the architectural innovation of Res-U-Net, the incorporation of ResNet as the 
encoder backbone marks a significant advancement, transcending traditional 
segmentation tasks. ResNet's deep residual learning framework, characterized by its 
identity shortcut connections, solves the depth dilemma, enabling the effective training of 
deeper neural networks by facilitating gradient flow. Within Res-U-Net, these residual 
mechanisms enhance the encoder's ability to maintain critical feature details through 
layers, crucial for capturing nuanced textures and structural variations across diverse 
imaging landscapes.  

The strategic use of ResNet's pre-trained weights within Res-U-Net not only 
propels the model towards faster convergence but also equips it with a versatile, pre-
learned feature repertoire, ready to be adapted and fine-tuned across a broad spectrum of 
segmentation challenges beyond the confines of any imagery. This adaptability, coupled 
with the model's fine-tuning capabilities, allows for precise customizations to the backbone, 
optimizing performance for specific tasks. Consequently, Res-U-Net stands as a paradigm 
of versatility and efficiency, setting new benchmarks in image segmentation across various 
domains, from environmental monitoring to urban planning. 
 
2.3.5 DeepLabV3+ 
 
DeepLabV3+ is a state-of-the-art deep learning model for semantic segmentation tasks. It 
employs atrous convolution, also known as dilated convolution, to capture both local and 
global contextual information at multiple scales (Chen et al., 2018; Liu et al., 2021). 
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Furthermore, DeepLabV3+ utilizes a spatial pyramid pooling module to aggregate multi-
scale features effectively. 

Exploring its architecture further reveals that the integration of atrous convolution 
and spatial pyramid pooling is crucial for efficiently capturing contextual information at 
multiple scales.  Expanding on this, atrous convolution, by varying dilation rates, expands 
the receptive field of convolutional filters, enabling the model to grasp both minute details 
and broader contextual cues. This method preserves the spatial resolution of feature maps, 
crucial for maintaining the fidelity of segmentation boundaries. Complementarily, pyramid 
pooling systematically aggregates features at multiple scales by applying pools at different 
resolutions, ensuring that global context is integrated across the entire scene. This layered 
approach mimics a multi-scale pyramid, where each level captures distinct spatial 
hierarchies, facilitating the model's ability to discern features from varying distances and 
sizes. Additionally, its encoder-decoder architecture, refined with depthwise separable 
convolution, optimizes boundary delineation while maintaining model compactness. These 
innovations position DeepLabV3+ as a versatile and efficient choice for semantic 
segmentation, applicable across a diverse range of visual understanding tasks. 

In summary, in this investigation, we strove to provide a meticulous analysis and 
comparative assessment of U-Net, RIU-Net, U-Net++, Res-U-Net, and DeepLabV3+ 
models. By addressing the specific task of building extraction from targeted study regions, 
we aimed to discern the most effective model for this application domain. 
 
2.4 Evaluation metrics 
 
The evaluation techniques employed in this study encompassed a range of metrics, among 
which the Confusion Matrix (Kohavi & Provost, 1998) holds significant importance. It 
delineates crucial conditions for analysis, including: 
 • True Positive (TP): Corresponding to accurate predictions of building positions 
that align with the ground truth. 
 • True Negative (TN): Reflecting precise predictions of non-building positions, in 
accordance with the ground truth. 
 • False Positive (FP): Representing erroneous predictions of positions as buildings, 
despite being non-building areas. 
 • False Negative (FN): Indicating flawed predictions of positions as non-buildings, 
when they are indeed buildings. 

These metrics play a pivotal role in the evaluation process, facilitating the utilization 
of equations (1) to (4). 
 

 Accuracy =
TP + TN

TP + TN + FP + FN
 (1) 

   

 Recall =
TP

TP + FN
 (2) 

   

 Precision =
TP

TP + FP
 (3) 

   

 F1 Score =
2 * TP

2 * TP + FP + FN
 (4) 
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Additionally, in this study, two similarity coefficient metrics, Intersection-over-Union 
(IoU) and Dice Coefficient, were employed to facilitate comparative analysis. 
 
2.4.1 Intersection-over-Union (IoU) 
 
IoU, also known as Jaccard Index, is a commonly used evaluation metric in semantic 
segmentation tasks. It was first proposed by Jaccard (1912) and has since become a 
standard measure for assessing accuracy of segmentation algorithms. IoU quantifies the 
overlap between the predicted segmentation mask and the ground truth mask by 
calculating the ratio of their intersection to their union. By comparing the predicted and 
actual building regions, IoU provides a quantitative measure of their spatial alignment and 
accuracy. The formula for the Jaccard Index is presented as equation (5). 
 

 IoU =
TP

TP + FP + FN
 (5) 

 
2.4.2 Dice Similarity Coefficient (DSC) 
 
The Dice Coefficient, also known as the Dice Similarity Coefficient (DSC), is a widely used 
similarity metric for evaluating semantic segmentation models. It was introduced by Dice 
(1945) and has since become a popular measure in medical image analysis (Sørensen, 
1948) and later other applications. Dice Coefficient quantifies the overlap between the 
predicted and ground truth segmentation masks by calculating the intersection divided by 
the sum of the areas of both masks. It provides a robust measure of segmentation 
performance. The formula for the Dice Coefficient can be seen in equation (6). 
 

 DSC =
2 * TP + smooth

2 * TP + FP + FN + smooth
 (6) 

 
 In the training of deep learning models for segmentation tasks, a critical adaptation 

of their application is the introduction of a smoothing term, which is essential for ensuring 
the stability of the training process. This modification addresses a potential issue that arises 
when both the ground truth and the prediction entirely consist of zeros, indicating perfect 
agreement in cases of background dominance but leading to an undefined condition in the 
DSC formula due to division by zero.  

Without the smoothing term, such scenarios would result in an infinite loss, 
disrupting the weight propagation and potentially derailing the training procedure. The 
smoothing term, therefore, serves a dual purpose: it prevents the occurrence of an infinite 
loss by avoiding division by zero and maintains the continuity of the gradient flow, thereby 
safeguarding the integrity of the model's learning trajectory. By incorporating this small 
constant, the training process becomes more robust, allowing the model to learn effectively 
even in the presence of challenging cases where the overlap between the predicted and 
actual segmentations might be minimal or non-existent. 
 

3. Results and Discussion 
 
In this study, the experiments covered the entire process from data preparation to result 
evaluation. Python code was utilized in conjunction with Tensorflow (Abadi et al., 2016) 
library, and the processing resources of Google Colab was employed (Google, n.d.). 
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Additionally, the processing resource used for deep learning model training was NVIDIA 
Tesla V100 SXM2 16 GB GPU backend. Satellite imagery data was imported and stored 
in Personal Google Drive before being processed in Google Colab. Both the training and 
testing sets of image data from the created dataset, comprising four sets in total (RGB, 
Enh-RGB, Gray, and Enh-Gray), were imported and underwent the Flatten process and 
the results were then stored as image files. 

The deep learning models were trained with consistent learning configurations. 
The validation split was set at 70% for training and 30% for the validation set. The models 
processed 250 epochs of training with a batch size of 8. The RMSProp optimizer with a 
learning rate of 0.001 was used. To compare the models' performances, IoU and Dice 
Similarity Coefficient (DSC) were employed. The experiments generated results of 48 
model combinations in total, based on the datasets and evaluation metrics, as shown in 
Table 1. 

The Res-U-Net and DeepLabV3+ models utilized pre-trained weights from the 
ImageNet dataset, designed for 3-channel RGB images. However, the study also explored 
datasets comprising gray and enhanced gray images, characterized by 1-channel RGB 
representation. Each pixel in these images spans a grayscale intensity range of 0-255, 
diverging from the multichannel color information used in the initial pre-training. 

Consequently, grayscale and enhanced grayscale image datasets could not be 
used for training of these specific models. Therefore, Res-U-Net and DeepLabV3+ models 
were trained exclusively using RGB and enhanced RGB image datasets. 

The U-Net series models underwent architectural refinements in both Encoder and 
Decoder components to ensure their harmonious configuration. The selection of filters was 
customized to suit the input dimensions of the image data used for training. For Inception 
module in RIU-Net, there were four branches of processing. The initial three branches 
applied Convolutional Layers that varied in terms of parameter settings, including filters, 
kernel size, and the number of layers. The final branch incorporated a max pooling layer. 
As a result, the outputs of all four branches were concatenated before being subjected to 
an additional process, facilitating the fusion of the input and the inception module's output 
in Residual block. For U-Net++, Res-U-Net, and DeepLabV3+ architectures, adjustments 
were only applied for overall parameter configuration. 

However, within the group of models that employed Res-U-Net and DeepLabV3+ 
backbones, the experiments were conducted using the original architectures in conjunction 
with a comparison of three backbone versions: ResNet-50, ResNet-101, and ResNet-152. 
The aim of this investigation was to ascertain which backbone configuration produced the 
most favorable outcomes when applied to the given input datasets. It was noteworthy that 
the architectural compositions of these three ResNet backbones exhibited varying levels 
of complexity, resulting in disparate learning durations and resource-intensive memory 
requirements. 

Following the definition of the model's architecture within the specified architectural 
framework and the parameterization tailored to align with the characteristics of the four 
datasets, the subsequent step involved testing the trained models against a test dataset 
(test set). Each model, trained on a specific type of dataset, was evaluated using a test set 
possessing similar characteristics. For instance, the Res-U-Net model trained with an RGB 
dataset was subsequently tested against an RGB test set. Furthermore, the evaluation 
employed three metrics: Intersection over Union (IoU), Dice Similarity Coefficient (DSC), 
and an evaluation metric using the F1 Score as the primary criterion, considered alongside 
Precision and Recall. Notably, the accuracy score could also be included in the analysis to 
examine predictions categorized as True Negatives (TN), given that this was the only 
equation used to evaluate TN values, as per Section 3.4 (1). 
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Table 1. Comparing results obtained from each model by F1 score in descending order 

Model Dataset Training 
Metric Accuracy Precision Recall F1 DSC IoU 

RUN w. RN-50 RGB DSC 0.9941 0.8492 0.8898 0.8543 0.8548 0.7812 
DLv3+ w. RN-50 Enh-RGB DSC 0.9924 0.8820 0.8725 0.8518 0.8525 0.7855 
DLv3+ w. RN-152 RGB DSC 0.9942 0.8450 0.8842 0.8448 0.8455 0.7717 
DLv3+ w. RN-101 RGB DSC 0.9940 0.8366 0.8892 0.8424 0.8430 0.7700 
DLv3+ w. RN-50 Enh-RGB IoU 0.9917 0.8343 0.9076 0.8413 0.8419 0.7730 
DLv3+ w. RN-101 Enh-RGB DSC 0.9925 0.8539 0.8873 0.8408 0.8415 0.7742 
DLv3+ w. RN-152 Enh-RGB IoU 0.9926 0.8687 0.8690 0.8401 0.8409 0.7759 
RUN w. RN-152 Enh-RGB DSC 0.9926 0.8623 0.8739 0.8395 0.8450 0.7747 
RUN w. RN-101 RGB DSC 0.9941 0.8367 0.8849 0.8373 0.8408 0.7642 
RUN w. RN-152 RGB DSC 0.9942 0.8475 0.8724 0.8372 0.8389 0.7636 
DLv3+ w. RN-152 Enh-RGB DSC 0.9924 0.8600 0.8693 0.8355 0.8366 0.7705 
RUN w. RN-152 Enh-RGB IoU 0.9920 0.8429 0.8942 0.8354 0.8374 0.7691 
RUN w. RN-101 Enh-RGB IoU 0.9923 0.8310 0.9046 0.8336 0.8344 0.7680 
RUN w. RN-101 Enh-RGB DSC 0.9923 0.8310 0.9046 0.8336 0.8344 0.7680 
RUN w. RN-50 Enh-RGB DSC 0.9926 0.8583 0.8738 0.8323 0.8330 0.7687 
U-Net++ RGB DSC 0.9934 0.8208 0.8828 0.8277 0.8286 0.7515 
DLv3+ w. RN-50 RGB DSC 0.9941 0.8426 0.8628 0.8230 0.8248 0.7500 
RUN w. RN-50 Enh-RGB IoU 0.9927 0.8517 0.8705 0.8222 0.8267 0.7588 
DLv3+ w. RN-101 Enh-RGB IoU 0.9918 0.8026 0.9167 0.8201 0.8219 0.7516 
U-Net++ Enh-RGB IoU 0.9920 0.8380 0.8820 0.8183 0.8196 0.7520 
DLv3+ w. RN-152 RGB IoU 0.9935 0.7863 0.9121 0.8164 0.8229 0.7400 
RUN w. RN-50 RGB IoU 0.9925 0.7779 0.9153 0.8153 0.8160 0.7364 
U-Net RGB IoU 0.9929 0.7979 0.8865 0.8143 0.8152 0.7361 
U-Net RGB DSC 0.9933 0.8259 0.8595 0.8136 0.8147 0.7382 
DLv3+ w. RN-50 RGB IoU 0.9935 0.7910 0.9012 0.8085 0.8095 0.7321 
U-Net++ Enh-RGB DSC 0.9920 0.8320 0.8733 0.8050 0.8069 0.7375 
DLv3+ w. RN-101 RGB IoU 0.9932 0.7607 0.9194 0.8009 0.8096 0.7243 
RIU-Net RGB DSC 0.9931 0.8374 0.8113 0.7956 0.8014 0.7170 
U-Net Enh-RGB DSC 0.9914 0.7892 0.8766 0.7787 0.7820 0.7093 
U-Net Enh-RGB IoU 0.9914 0.7892 0.8766 0.7787 0.7820 0.7093 
U-Net++ RGB IoU 0.9925 0.7386 0.9089 0.7779 0.7797 0.6983 
RUN w. RN-101 RGB IoU 0.9927 0.7420 0.9191 0.7756 0.7822 0.6990 
U-Net++ Gray DSC 0.9922 0.7730 0.7990 0.7373 0.7405 0.6628 
RIU-Net Enh-RGB DSC 0.9907 0.7136 0.8590 0.7048 0.7206 0.6322 
U-Net++ Gray IoU 0.9883 0.6729 0.8876 0.7011 0.7032 0.6240 
RIU-Net Gray DSC 0.9923 0.7805 0.7668 0.7010 0.7102 0.6300 
RUN w. RN-152 RGB IoU 0.9918 0.6284 0.9217 0.6770 0.6851 0.5992 
U-Net Gray DSC 0.9911 0.7163 0.7875 0.6732 0.6799 0.5960 
U-Net Gray IoU 0.9908 0.6659 0.7978 0.6569 0.6634 0.5788 
RIU-Net RGB IoU 0.9908 0.6135 0.9009 0.6556 0.6695 0.5732 
RIU-Net Enh-RGB IoU 0.9908 0.6592 0.8562 0.6450 0.6796 0.5732 
RIU-Net Gray IoU 0.9904 0.5885 0.8278 0.5889 0.6060 0.5121 
RIU-Net Enh-Gray DSC 0.9874 0.7270 0.6493 0.5193 0.5393 0.4573 
U-Net++ Enh-Gray DSC 0.9870 0.6017 0.6827 0.4907 0.4960 0.4230 
U-Net Enh-Gray DSC 0.9864 0.5535 0.6876 0.4580 0.4650 0.3895 
U-Net++ Enh-Gray IoU 0.9852 0.4641 0.7484 0.4255 0.4308 0.3517 
U-Net Enh-Gray IoU 0.9842 0.3980 0.7309 0.3767 0.3817 0.3060 
RIU-Net Enh-Gray IoU 0.9856 0.4051 0.7438 0.3685 0.3837 0.2974 

Note: In this Table, for example, 'RUN w. RN-50' refers to Res-U-Net with ResNet-50, and 
'DLv3+ w. RN-50' denotes DeepLabV3+ with ResNet-50. Abbreviations are utilized to 
concisely represent model configurations. 
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An example involved the testing of the Res-U-Net model with a ResNet-50 
backbone, trained on an RGB dataset, against a test set, as depicted in Figure 5. In this 
figure, Figure 5(a) represents the input image for the model to predict building structures, 
and Figure 5(b) denotes the Ground-truth identifying the locations of these structures. 
These images were utilized to evaluate the model's performance using the three metrics 
mentioned. Subplot (c) highlights the areas predicted by the model (in white) using the IoU 
metric during training, yielding an F1 Score of 73.13%, with IoU and DSC scores of 57.64% 
and 73.13%, respectively. Subplot (d) shows the error in predictions as deviations from the 
Ground-truth (b), similar to subplots (e) and (f), which represent the prediction outcomes 
and their corresponding errors, achieving evaluation scores of 76.17% for the F1 Score 
and 61.51% and 76.17% for IoU and DSC, respectively. Additionally, for the specific 
examples tested and the evaluation of the outcomes using the F1 and DSC metrics, the 
scores are identical due to the previously mentioned calculation formula. 

Consequently, upon subjecting the entire cohort of 48 models to the testing phase 
using the designated test set and subsequently applying evaluation metrics to the 
predictive outcomes, the resultant test scores are presented as per Table 1. Additionally, 
the research design employed herein engendered an extensive array of models and 
corresponding outcomes. The ensuing discourse will methodically address each point of 
interest in a sequential manner. 

The model that yielded the best predictive results when evaluated by the F1 score 
was Res-U-Net with ResNet-50, which utilized an RGB dataset and was assessed during 
training with DSC, achieving an F1 score of 85.43%. In comparison, when evaluated with 
the DSC and IoU metrics, the scores were 85.48% and 78.12%, respectively. However, 
when considering the balance between Precision and Recall, it was observed that 
DeepLabV3+ with ResNet-50 (Enh-RGB, DSC) performed better but the outcomes yielded 
F1 scores of 85.18%. Yet, the F1 calculation does not derive from a joint operation of 
precision and recall scores, as per Section 3.4 (4).  

Therefore, to analyze the outcomes derived from the evaluation, it was imperative 
to conduct a comparative analysis of the predictive results between the two aforementioned 
models, as depicted in Figure 6. A key observation was that the white predicted areas by 
Res-U-Net with ResNet-50 (RGB, DSC) delineated the structures more distinctly than the 
predictions by DeepLabV3+ with ResNet-50 (Enh-RGB, DSC), which tended to merge 
structures into a single area, indicating a lack of clear separation. Furthermore, the 
surrounding predicted areas were larger, which was consistent with the average accuracy 
values that consider True Negatives in the calculation. Nonetheless, when compared to 
the Ground-truth, the DeepLabV3+ with ResNet-50 (Enh-RGB) model predicted a more 
comprehensive coverage of structures, highlighting its precision. However, considering the 
areas where the predicted structures were connected, this leads to result in a slightly lower 
average F1 score. 

Furthermore, when comparing models of identical types and dataset features but 
employing the IoU metric throughout the training phase, the outcomes yielded F1 scores 
of 84.13% for DeepLabV3+ with ResNet-50 (Enh-RGB, IoU) and 81.53% for Res-U-Net 
with ResNet-50 (RGB, IoU). Upon examination, it became evident that the score gap 
between the two versions of DeepLabV3+ was not substantial when compared to Res-U-
Net. 
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Figure 5. Comparative evaluation of Res-U-Net with ResNet-50 on RGB dataset: 
predictive accuracy through F1 score, IoU, and DSC 
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Figure 6. Comparative of structural segmentation by Res-U-Net with ResNet-50 (RGB, 
DSC) and DeepLabV3+ with ResNet-50 (Enh-RGB, DSC) 

 
Subsequent to addressing models with comparably high performance, the 

evaluation scores unequivocally suggested that models incorporating a backbone 
architecture exhibited superior effectiveness. Models that were positioned at the higher 
end of the table, arranged in descending order of F1 scores, consistently incorporated 
backbone structures. Another noteworthy observation is that the models trained on the 
RGB image datasets consistently achieved higher evaluation scores compared to their 
counterparts trained on grayscale image datasets. Moreover, the deployment of the DSC 
metric during the training phase contributed to the enhanced performance of the models. 

Therefore, the models trained and evaluated using DSC metric demonstrated slight 
variations in performance. Specifically, Res-U-Net model with ResNet-50 backbone 
exhibited a slightly better performance than DeepLabV3+ model with a ResNet-50 
backbone, with DSC scores of 85.48% and 85.25%. It is important to note that Res-U-Net 
model was trained using RGB images, while DeepLabV3+ model utilized enhanced RGB 
images during training. 

However, upon reviewing the sample prediction images (referred to Figure 7 in the 
DSC result comparison). The significance of color in the datasets and backbone 
architecture in segmentation models is important. The comparison revealed a consistent 
trend: color datasets (both RGB and Enhanced RGB) yielded superior segmentation 
results, markedly impacting F1 scores more than grayscale datasets (both Gray and 
Enhanced Gray), affirming the necessity of thoughtful dataset choice. Additionally, the use 
of backbone architectures, such as ResNet-50, ResNet-101, and ResNet-152, improved 
F1 scores and segmentation precision compared to models without backbones. This 
finding accentuates the critical role of both dataset selection and backbone inclusion in 
enhancing model performance. 

Discrepancies in model predictions provide actionable insights for refining model 
parameters and informing preprocessing strategies. Specifically, our results indicated that 
models without sophisticated backbones, such as U-Net, RIU-Net and U-Net++, were 
prone to structural distortions in segmentation. In contrast, models with advanced 
backbones demonstrated fewer errors and more accurate delineation of structures. It was 
observed that Res-U-Net model provided more distinct segmentation of building structures 
than DeepLabV3+. Nonetheless, the Res-U-Net model also exhibited a higher occurrence 
of small white dots resembling noise.  
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Figure 7. Examples of results obtained from each model based on DSC metric with F1 
score 

 
The models were evaluated using the IoU metric and tested on the designated test 

set. The experimental results indicated that DeepLabV3+ coupled with ResNet-152 and 
ResNet-50 backbones, trained on the RGB image dataset, achieved IoU scores of 77.59% 
and 77.30%, respectively. Similarly, the corresponding F1 scores were 84.01% and 
84.13%. 

Moreover, when examining the prediction outcomes for a specific image (referred 
to Figure 8 in the comparison of IoU results), it became apparent that models trained and 
evaluated with the IoU metric during the training process exhibited a lower overall 
performance compared to those assessed with the DSC metric. This observation suggests 
that while IoU provides a stringent measure of overlap between predicted and actual 
segments, the DSC metric, with its balanced account of precision and recall, was probably  
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Figure 8. Examples of results obtained from each model based on IoU metric with F1 
score 

 
more aligned with the visual quality of segmentation, yielding higher scores in the 
evaluation of results. It was evident that the DeepLabV3+ models with ResNet-152 and 
ResNet-50 backbones performed promisingly in accurately identifying building structures, 
exhibiting minimal instances of insignificant white noise. Despite the interconnectedness 
of the building structures, the models' predictions remained remarkably accurate. Overall, 
RGB and enhanced RGB image dataset yielded superior performance across all models. 
On the other hand, the grayscale and enhanced grayscale image datasets showed 
considerably lower evaluation scores when compared to their RGB counterparts. Upon 
visual inspection of the predicted images, it became apparent that while the buildings were 
not connected, there were several false-positive predictions, indicating a low precision 
value. 
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The findings from this experiment demonstrated that models trained on different 
datasets and evaluated using the DSC metric generally exhibited better performance 
compared to those evaluated using IoU metric, as indicated by the F1 score. Specifically, 
the Res-U-Net model with ResNet-50 (RGB) achieved the highest F1 score of 85.43%, 
outperforming the DeepLabV3+ model with ResNet-50 (Enh-RGB), which scored 85.18%. 
According to the experiments, models utilizing specific backbone architectures and pre-
trained weights yielded superior results. Furthermore, the results suggested that color 
plays a significant role in accurately extracting building structures from images. Models 
evaluated using DSC metric consistently performed better on RGB image datasets, while 
models evaluated using IoU metric exhibited higher performance on enhanced RGB image 
datasets. 

In the assessment of building extraction accuracy from satellite imagery, utilizing 
both Intersection over Union (IoU) and Dice Coefficient metrics produced distinct F1 
scores, despite the employment of identical models and datasets. The discrepancy in F1 
scores, detailed in Table 2, underscores the concept that the choice of metric does not 
influence the model training duration. It was established that the architectural complexity 
of the models primarily dictated training times. The analysis indicates that the U-Net model, 
with its minimalistic architecture, needed lower training time relative to more complex 
models. Furthermore, models incorporating backbones, notably Res-U-Net and 
DeepLabV3+, exhibited extended training periods. 

This insight emphasizes the importance of considering both performance 
effectiveness and training duration in model selection, advocating for a strategic balance 
to optimize accuracy and computational time expenditure. 

 
Table 2. Comparing computational time of each model 

Model Dataset Training Time (h) Training Time (min)  
(multiply the time (h) by 60) 

U-Net 
RGB 1.264 75.84 
Enh-RGB 1.344 80.64 
Gray 1.344 80.64 
Enh-Gray 1.346 80.76 

RIU-Net 
RGB 2.082 124.92 
Enh-RGB 2.181 130.86 
Gray 1.977 118.62 
Enh-Gray 2.121 127.26 

U-Net++ 
RGB 1.561 93.66 
Enh-RGB 1.584 95.04 
Gray 1.583 94.98 
Enh-Gray 1.579 94.74 

Res-U-Net with ResNet-50 RGB 2.416 144.96 
Enh-RGB 2.135 128.1 

Res-U-Net with ResNet-101 RGB 1.976 118.56 
Enh-RGB 2.211 132.66 

Res-U-Net with ResNet-152 RGB 2.446 146.76 
Enh-RGB 2.352 141.12 

DeepLabV3+ with ResNet-
50 

RGB 2.346 140.76 
Enh-RGB 2.297 137.82 

DeepLabV3+ with ResNet-
101 

RGB 2.374 142.44 
Enh-RGB 2.352 141.12 

DeepLabV3+ with ResNet-
152 

RGB 2.435 146.1 
Enh-RGB 2.451 147.06 
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Therefore, based on the findings of this experiment, it can be concluded that Res-
U-Net model with ResNet-50 is a suitable choice for the given dataset. This model exhibited 
superior performance in terms of selected evaluation metrics while maintaining relatively 
lower complexity compared to other backbone architectures, such as ResNet-101 and 
ResNet-152. The adoption of ResNet-50 not only contributes to efficient resource utilization 
and time saving during the learning process but also allows for greater flexibility in further 
customization and development by independently exploring and fine-tuning the backbone 
architecture. 

From this study, it is evident that the selected models show potential for image 
segmentation. However, each model still has limitations worth analyzing and considering. 
Starting with U-Net, despite its fast-training time and satisfactory results, its architecture 
has limitations in detecting features from the images. Despite the model captures local 
information well, it possibly misses contextual details from larger image regions due to its 
limited depth and field of view (Wu et al., 2022). Furthermore, it requires a considerable 
amount of data to enhance its performance further. RIU-Net, which integrates Residual 
and Inception modules to improve feature extraction, introduces increased complexity to 
the model architecture, demanding more time and computational resources for training. 
The experimental results indicate that despite this is the only model without a backbone 
application, it requires almost as much time as models that do use one. The added 
complexity also complicates hyperparameter tuning, making optimization more 
challenging. 

U-Net++ features an architecture with nested skip pathways, increasing the 
number of parameters that need processing. According to experimental durations, it takes 
a longer time to train than the original U-Net architecture, and its dense skip connections 
might increase the risk of overfitting on smaller datasets. Res-U-Net, which scored the 
highest F1, encounters the double-edged sword of complexity and the need to rely on a 
backbone. The performance of the model can be limited if the backbone is not appropriately 
selected to match the data and task objectives. Additionally, the use of a backbone brings 
about transfer learning limitations, utilizing pre-trained weights. Hence, fine-tuning to 
specific segmentation tasks might present challenges. Lastly, DeepLabV3+, while slightly 
underperforming in F1 scores compared to Res-U-Net, exhibits a notable balance between 
precision and recall. However, the application of atrous convolution can increase 
processing complexity and affect training duration, especially with high-resolution images. 
The incorporation of spatial pyramid pooling, designed to capture multi-scale information, 
might still miss capturing spatial details or significant image features at the same level, 
potentially losing some details. The reliance on a backbone, as in the case of Res-U-Net's 
limitations, involves transfer learning challenges. 

This comparative analysis of the models illuminates the intricate balance between 
their complexity, performance, and the resources they need. The choice of model hinges 
on the precise objectives and the computational resources available. Additionally, it is 
essential to consider the dataset's specific attributes and its volume. However, it is 
important to be mindful of the potential risks associated with these modifications (Namdeo 
& Bhadoriya, 2016; Zhang et al., 2018). Moreover, exploring alternative deep learning 
models and investigating the development of encoders, decoders, and the utilization of 
different backbones can be fruitful avenues for further research. In a previous study (Zhang 
et al., 2021), a two-stage framework called SRBuildingSeg was proposed to achieve super-
resolution (SR) building extraction, which demonstrated superior prediction accuracy 
compared to the U-Net Series and DeepLabV3+ models. 
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4. Conclusions 
 
This study presented a comprehensive approach for building extraction from high-
resolution satellite imagery in Loei province. The presented approach covered various 
stages, including data collection, application of preprocessing techniques, and utilization of 
diverse models for result comparison. The experimental findings demonstrated that Res-
U-Net model with ResNet-50 (RGB, DSC) achieved the highest accuracy in prediction 
results. The extracted buildings exhibited clearer characteristics compared to DeepLabV3+ 
model with ResNet-50 (Enh-RGB, DSC). These predictions displayed connected buildings 
and wider estimated areas, resembling an expansion of the building boundaries as 
compared to the ground truth. 

Upon examining the experimental outcomes in conjunction with the performance 
scores derived from various metrics, it became evident that certain key elements were 
instrumental in enhancing the models' efficiency and effectiveness in making predictions. 
A primary factor was the integration of a backbone within the model's structural 
architecture. Evaluations consistently demonstrated that models equipped with a 
backbone, such as Res-U-Net and DeepLabV3+, markedly surpassed their counterparts 
in performance. This study specifically revealed that the ResNet-50 backbone secured the 
highest F1 Score for both Res-U-Net and DeepLabV3+, underscoring the backbone's 
critical role in achieving superior predictive accuracy. 

Furthermore, the importance of color channels as a feature for building extraction 
that significantly impacting the model's performance was observed. The dataset 
categorization, based on color attributes discerned during the preprocessing phase, 
revealed that models trained on RGB and Enhanced RGB datasets consistently 
outperformed those trained on grayscale (Gray, Enh-Gray) images. This finding 
underscores the critical importance of color in the segmentation process. The impact of the 
chosen evaluation metric on the model predictive accuracy is also noteworthy. Among the 
metrics evaluated, the Dice Similarity Coefficient (DSC) demonstrated superior 
performance over Intersection-over-Union (IoU). However, from a research and 
development perspective, employing both metrics simultaneously is advisable when 
resource constraints are not a primary concern, as they generally align in indicating 
performance trends. In scenarios where resource limitations are a factor, prioritizing the 
DSC metric for image segmentation tasks has been shown to enhance model outcomes. 

Considering the points and factors previously discussed, and upon analyzing the 
highest F1 scores and DSC, it can be concluded that Res-U-Net with ResNet-50 offers the 
most accurate predictions. However, when a balance between precision and recall was 
considered, DeepLabV3+ with ResNet-50 emerged as the superior performer. The study 
of this model, trained on an Enhanced RGB dataset, confirmed that preprocessing 
significantly improved predictive accuracy, leading to more effective image segmentation. 
Nonetheless, caution is warranted as preprocessing images from diverse areas beyond 
the initial dataset may introduce variability due to temporal, weather, and lighting conditions 
inherent in satellite imagery. The research area, characterized by rural and suburban 
settings, included extensive forested regions. The model's ability to precisely identify non-
structural elements contributed to an elevated accuracy score. 
  In addition to dataset characteristics, it is imperative to consider the architectural 
complexity of models and their training duration. Notably, models with more intricate 
structures demand extended training times. Despite U-Net having the simplest architecture 
and the shortest training duration among the evaluated models, its performance remained 
competitively close to that of other model types. Therefore, U-Net is an excellent option for 



Chueprasert et al.       Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 1), e0260846 
 
 

23 

conducting proof of concept on unfamiliar datasets to test specific hypotheses. Meanwhile, 
models that integrate backbone architectures, while requiring longer training periods, tend 
to achieve more effective results. For future development and advancements, there are 
several noteworthy aspects to consider for stages such as preprocessing and 
postprocessing, to enhance the completeness of images and predictions.  
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