
  
Current Applied Science and Technology Vol. 24 No. 1 

 

Research article 
________________________________________________________________________________________ 

 

________________________________________ 
*Corresponding author: Tel.: (+066) 0848755582 Fax: (+066) 043754359 
                                       E-mail: suchart.k@msu.ac.th 

1 

Developing an Intelligent Farm System to Automate Real-time 
Detection of Fungal Diseases in Mushrooms 
 
Chatklaw Jareanpon, Suchart Khummanee*, Patharee Sriputta and Peter Scully 
 
Department of Computer Science, Faculty of Informatics, Mahasarakham University, 
Mahasarakham, Thailand 
 
Curr. Appl. Sci. Technol. 2024, Vol. 24 (No. 1), e0255708; https://doi.org/10.55003/cast.2023.255708 
 
Received: 26 August 2022, Revised: 6 January 2023, Accepted: 18 April 2023, Published: 1 June 2023 
 
 

Abstract 
 

Mushrooms are economically valuable crops of high nutritional 
value. However, during cultivation they are continually 
threatened by fungal diseases, even in controlled-condition farm 
ecosystems. Fungal diseases significantly affect mushroom 
growth and can rapidly contaminate an entire crop. Farmer 
inspections can be hazardous to farmer health. This paper 
contributes an automated fungal disease detection system for the 
Sajor-caju mushrooms together with an intelligent farm system 
for precise cultivation environment control. The objective was to 
create and test a detection system that could detect fungal 
diseases rapidly, reduce farmer exposure to fungal spores, and 
alert farmers when fungal disease was detected. The system is 
composed of three parts: (i) a high-precision environment control 
system, (ii) an innovative imaging robot system, and (iii) a real-
time fungal disease prognosis system using deep learning, with 
an alarm system. The trial results show that the real-time disease 
prognosis system has 94.35% precision (89.47% F1-score, 
n=13,500), and its twice daily inspections detect and report 
fungal disease typically within 6 to 12 h. The innovative farm’s 
overall capability for mushroom cultivation (environment 
control) is regarded as excellent and has precise control (99.6% 
capability, over 3-months). The innovative imaging robot’s 
overall operational trial performance is effective (at 99.7%). 
Moreover, the system effectively notifies farmers via smartphone 
when a fungal disease is detected. 
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1. Introduction 
 
Mushrooms are a popular consumer food category providing a source of dietary nutrition including 
carbohydrates, proteins, fats, minerals, and vitamins [1, 2]. Consumption of some varieties have 
been linked to lowering levels of harmful cholesterol (low density lipoprotein) [3] and some have 
low sodium content, supporting their suitability for people with high risk of diseases such as liver, 
kidney and heart diseases, and hypertension. 
 Most commercially cultivated mushrooms in Thailand thrive in hot and humid climates 
and were traditionally harvested only during the warm and rainy seasons. The concept of closed-
loop ecosystem environments for mushroom cultivation was introduced to provide higher yields 
necessary because of high demand. Modern intelligent farm systems [4-7] can manage, monitor, 
and optimize the environment for the cultivation of various crops, including mushrooms. They can 
control temperature, humidity, soil moisture, light, wind, carbon dioxide levels, and so on, using 
embedded microcontroller systems with various sensors and robotic actuators. The transition from 
traditional mushroom cultivation methods to smart methods allows for year-round cultivation and 
for increased yield (volume) of mushrooms. Yet, diseases can still occur even with closed-loop 
ecosystems, and fungal diseases are among the most damaging for mushrooms. 
 According to Kassim et al. [8] and Chieochan et al. [9], the leading causes of fungal disease 
in mushrooms are contamination of the cultivation material and the accumulated humidity inside 
the fruiting chamber during cultivation. The first cause can be solved by controlling the cleanliness 
of the cultivation material during the packing process. The second cause arises from natural 
fluctuations in environmental conditions. Mushrooms can grow well in a temperature range of 25-
35°C and with a relative humidity of about 70-90% [1]. However, preferable temperature and 
relative humidity of each mushroom variety are varied. For example, the preferred temperature and 
relative humidity for the Sajor-caju mushroom during incubation and flowering periods are 25°C 
and 80-85%, respectively. 
 Within precision farming, there exists a known trade-off of precision environment 
condition control and energy consumption costs against product quality outcome and its marketable 
value. Often, broadening the range of acceptable conditions can lead to an economically-viable point 
of cost with product value, and allow for a system of carefully balanced factors that achieves an 
effective financial investment. Therefore, most smart farms define an acceptable range of 
environment conditions to reduce energy (compared to fixed conditions, for example permanent air 
conditioning), such as a temperature range of 25-28°C and humidity range of 80-85%. Yet, a 
consequence of loosening the environment control can be an accumulation of humidity and the 
realization of conditions in which fungal disease can then thrive.  
 The typical procedure for detection of fungal diseases in mushroom cultivation plots 
requires farmers to enter the fruiting chamber (environment) and visually inspect each planting bag. 
Additional inspection tasks include tracking growth, harvesting, and so on, often leading to 1 to 3 h 
per day in the environment. Inhalation of the micron-sized spores has been linked to (farmer) health 
concerns [10], including developing respiratory problems, such as pneumonitis, lung abscesses, lung 
diseases, kidney failures, cancer, chronic fatigue, and allergies. Therefore, reduction of time spent 
in the environment helps to mitigate the farmer health ailments.   

Mushrooms, which are fungi, can be affected by fungal disease. Once a fungal disease 
begins to grow on a mushroom, it will suppress growth and will eventually consume the mushroom 
unless removed or treated. There are many fungal disease varieties that are colloquially known by 
terms such as “green fungus”, “yellow fungus”, “black fungus”, and so on. The typical pathway of 
fungal disease growth starts with contaminating fungal planting material and proceeds with 
accumulated moisture during mushroom cultivation [8, 9]. 
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In this research, data on the Sajor-caju mushroom and the fungal diseases affecting 
consultant farmers in Khon Kaen and Maha Sarakham provinces of Thailand were collected. Special 
attention was paid to “green mold” or “green fungal disease” (Trichoderma harzianum) as it is a 
major source of contamination and crop loss for mushroom farmers, including the Sajor-caju variety 
[11]. Table 1 shows an example of the sequence of green fungal disease growth phases on Sajor-
caju mushrooms. Throughout the fungal disease growth, fungal spores are released. Consequently, 
nearby mushrooms can rapidly become infected with the same fungal disease, and this poses a major 
problem for closed-loop ecosystem fruiting chambers. Within 48 h, all mushrooms in the fruiting 
chamber may become infected with the fungus. For these reasons, vigilance, and early detection of 
fungal diseases (within 12 h) can mitigate the massive potential of mushroom crop damage and loss. 
 
Table 1. Examples of characteristics and duration of green fungal disease 

Phase Example of Fungal 
Disease 

Description 

 

1 

 

Duration 1-6 h: Fungal disease occurs as a small spot (green 
colony) at the mouth of the planting bag. An area with 
accumulated moisture is visible. 

 

2 

 

Duration 7-12 h: Fungal disease begins to spread at the 
mouth of the planting bag. The mushroom continues to grow 
normally. 

 

3 

 

Duration 13-18 h: Fungal disease expands and begins to 
consume the mushroom. 

 

4 

 

Duration 19-24 h: Fungal disease has spread to most of the 
planting bag. Mushroom growth is stalling. 

 

5 

 

Duration 25-30 h: Fungal disease has spread to the entire 
planting bag. The fungal-infected mushroom has begun to turn 
brown. 

 

6 
 

Duration 31-36 h: Fungal disease has grown to one-third of 
the planting bag. The mushroom has stopped growing. 

 

7 

 

Duration over 36 h: Fungal disease has spread throughout the 
planting bag. The mushroom is dark brown and has stopped 
growing. The fungal disease is now mature. 
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This research work presents the design and evaluation of an innovative and intelligent farm 
system prototype for integrated mushroom cultivation (environment control) with innovative fungal 
disease detection. The end-to-end system includes farm design to farmer notification. The key 
contributions are the design and evaluation of: 

1. An intelligent farm system with environment control system to cultivate Sajor-caju 
mushrooms optimally. 

2. An innovative imaging robot for fungal disease detection. 
3. A real-time automated fungal disease detection system using the imaging robot, a deep 

learning image-based model, and a notification system. 
 
 
2. Materials and Methods 
 
The automated system, which was our innovative farm, was installed at two sites in Khon Kaen and 
Maha Sarakham province, Thailand. The consultant Sajor-caju mushroom farms are in operation 
throughout the year, with stable and continuous high yield production. Every effort was made to 
ensure minimal interruption in the farming operations.  
 
2.1 Requirements: automated system for cultivation and disease analysis 

 
An intelligent farm system for mushroom cultivation and fungal disease diagnosis should have the 
following qualities: 

1. Continuously monitor environment conditions such as temperature, humidity, light, and 
so on, via sensors. 

2. Control environment conditions such as fogging (mist), air conditioning, lighting, 
exhaust fans, and so on, via actuators. 

3. Respond to sensor conditions by activating control actuators. 
4. Capture images to monitor farm and system operations. 
5. Capture images from which fungal disease can be diagnosed and pinpointed. 
6. Notify or alert farm operator(s) for disease diagnosis and system events. 
Existing intelligent farm systems [3-6] and the consultant farms in this study have not been 

capable of fungal disease analysis. There are several reasons for this: 
1. Ceiling or rack mounted surveillance cameras inside smart farms can often view the 

entire crop (Figure 1(A)); however, their directional perspective is unsuitable for disease analysis as 
they lack image clarity and target consistency, as shown in Figure 1(B). 

2. Suitable images for fungal disease analysis are taken of the (air-exposed) front of the 
mushroom planting bag, shown in Figure 1(C), which is challenging to achieve consistently without 
automation (robotics). 

3. Mushroom cultivation demands low light conditions, while high clarity photography for 
fungal disease analysis requires well-managed lighting. 

4. Best practice guidelines recommend that farmers manually survey their crop for fungal 
disease at least twice daily, as disease can start at any time and spread to the entire crop within         
12 h. As spore inhalation can be detrimental to farmer health, regular automated inspection and 
diagnosis is preferable. 
 Based on the previous work concerning the problems and limitations of intelligent 
mushroom cultivation and fungal disease diagnosis, we have designed, developed, and evaluated an 
automated system – an innovative and intelligent farm. The system uses (i) an environment control 
system to manage growing conditions, (ii) an imaging robot to regularly capture images for disease  
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(A) Camera installation 

location in existing smart 
farms 

(B) Mushroom photos taken 
with a camera (unsuitable) 

(C) Mushroom image suitable 
for image processing 

 
Figure 1. Location of camera installations and photos taken from existing smart farms 

 
analysis, (iii) a fungal disease detection system using a deep learning model, and (iv) a real-time  
alert service to inform farmers when fungal disease is detected and to monitor the farm conditions. 
As a result, the system aims to lower the farmers’ time inside the fruiting chamber, lowering the 
farmers’ risk of health complications and disease arising from spore inhalation. 

 
2.2 Environment and environmental control system 

 
The real innovative farm for mushroom cultivation from the study is shown in Figure 2. Each smart 
farm site consisted of one or more fruiting chambers, with uniform structure, design, and 
dimensions. The size of the fruiting chamber is 6.2 x 12.5 x 3.5 m (width x length x height). The 
front of the building is equipped with ventilation fans (sizes 36-50 inches). The rear of each fruiting 
chamber is equipped with a water pump (1.5 hp), an evaporative cooling panel (EVAP size as 5 x 6 x 
1.8m), and includes a 200 L water tank, as shown in Figure 3(A). 

The internal structure is a closed system and is equipped with insulation to maintain a 
constant temperature all year round. The fruiting chamber has a 330-watt solar panel (external roof), 
a solar control cabinet (Inverter), a 220-volt electrical system, and a lighting system. In addition, the 
fruiting chamber is equipped with temperature (DS18B20), humidity (TH-030), soil moisture, and 
light sensors, with each type of sensor installed in approximately six positions throughout the house, 
as shown in Figure 3(B). Surveillance cameras are installed at two or more locations inside the house 
to monitor the operation of various pieces of equipment such as fans, lighting and cooling system, 
etc. (Figure 3(D)). 

The smart farm control room is located outside the fruiting chamber(s), consisting of the 
electrical system, the control system for all equipment, all the sensor receivers, and the computer 
system for the artificial intelligence and software systems (i.e., detection model, data receipt/storage, 
notification, and monitoring systems, etc.), as shown in Figure 3(E).  

Microcontrollers and computer systems automatically control the electrical and IoT 
equipment across the innovative farm system (within the fruiting chambers). The environment 
control intelligence system is deterministic, and its objective is to control relative humidity and 
temperature within a nominal range. When the temperature sensor value exceeds the maximum 
range, the external extractor fan is initiated and will terminate after the temperature returns to 
nominal. When relative humidity falls below the lower threshold, the misting device (Figure 3(C)) 
will start and terminate after humidity returns to a nominal percentage.  

The precise sensor value ranges for Sajor-caju cultivation varied among the consultant 
farmers, the status of their crops, location and other constraints. Temperature ranges included 28-
32°C, 25-30°C, and precisely 25°C (Figure 3(F)). Relative humidity ranges were generally held with 
60-80% or 60-70%. Light levels ranged from zero to very low light, which we calibrated at 20-30% 
on our sensors.  The overall control system design is shown in Figure 4. 
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Figure 2. Smart farm structure 
 

   

(A) Pump, EVAP and tank (B) Temperature and 
soil sensor 

(C) Misting system 

   

(D)  Sensors and IP cameras (E) Control equipment 
for smart farm 

(F) Control software for smart farm 

 
Figure 3. A real innovative farm for mushroom 

 
 

 
 

Figure 4. Overall control system design 
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2.3 Imaging robot design 
 

The imaging robot is the component of the innovative farm system which passively captures images 
of the mushroom racks from which fungal disease can be identified. Given the problems and 
limitations of previous work concerning cultivation with fungal disease diagnosis (see Section 2.1), 
existing surveillance and static camera systems with limited lighting were inadequate, and a 
specialized camera solution was required. The requirements of this imaging task (see Section 2.1) 
are addressed by the automated imaging robot design described in this section. 
 The imaging robot’s objectives are to (i) obtain high-clarity and high-definition images of 
the air-exposed mushroom surfaces (mounted in racks), (ii) reduce farmer exposure to spores, and 
(iii) mitigate the disturbance to crop conditions (to avoid impeding crop growth).  

Further requirements of the imaging robot: 
1. The robot must be able to capture clear images of the front of every mushroom planting 

bag. 
2. Photographic lighting by the robot must not hinder mushroom cultivation. 
3. The robot must automatically capture images of mushrooms throughout the day (24 

h/day). 
4. The robot must be small, lightweight, and flexible to operate. 
5. The robot must be able to transmit captured images for image processing for fungal 

disease detection. Wireless communication is selected, as it reduces cabling weight, and thus 
reduces robot motor specification and improves the convenience of transporting and operating the 
robot. 

The detailed criteria for the design and development of the imaging robot within the 
innovative farm are: 

1. The robot moves in a “square wave” pattern to cover the image target capture area. 
2. The robot can move horizontally (approximately 1 to 12 m distance in the X-axis 

direction) and vertically (1 to 2 m in the Y-axis direction) automatically by moving along the rails 
inside the smart farm (V-Slot aluminum profile). 

3. The robot uses a collision sensor (Impact Switch Module) to automatically detect the 
end of its X- and Y-axis motion. 

4. The movement speed of the robot can be adjusted according to requirements, by software 
adjustments. 

5. The robot can capture images of various sizes; the images must be HD resolution (the 
default size is 1,280 x 720 pixels). 

6. The image brightness (lighting) is created by an LED light bulb (1250 lumen, diffuse 
6500K, IR- and UV-filtered). Empirical trials showed this brightness level and filtering as most 
suitable for image capture during mushroom cultivation. 

7. The image data captured by the robot is transmitted over the wireless network. 
8. Communication between the robot and the image processing system is carried out 

through an IP network. 
9. The robot and the image processing system operate all day (24 h) because it is impossible 

to predict when a fungal disease will occur. 
These criteria lead to the following robot design and development steps: 
Step 1/4: Design a prototype robot within 3D design software [9] to simulate the operation 

and define the robot's various components, as shown in Figure 5. 
Step 2/4: Build the rail system to allow the imaging robot to move in a predetermined 

range. The rail’s material should be small, lightweight, strong, and inexpensive. Therefore, 
aluminum profiles are used to build the rail system, as shown in Figure 6. 
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(A) front view (B) top view 

Figure 5. Designing a prototype robot using 3D design software [12] 

 

   
(A) Aluminum V-Slot Gantry 

Plate 
 

(A) V-Slot Gantry Plate 
20 mm 

(C) Aluminum alloy timing 
belt holder 

   
(D) V-slot 2020 Linear 

Actuator Bundle Belt Driven 
350 mm 

(E) Aluminum round tube,  
4 hunks, 1.2 mm thick, silver 

color 

(F) Robotic components 

 
Figure 6. Materials used for the construction of the rail system 

 
The completed rail system is shown in Figure 7. The horizontal (X-axis) rails within the 

fruiting chamber are approximately 12 m long (left-to-right of mushroom rack), and the vertical rails 
(Y-axis) are approximately 2 m long (height). The movement of the robot (X and Y-axis direction) 
uses a belt system (size 6-8 mm) with stepper motors controlled by a microcontroller (Arduino 
UNO). The movement speed of the robot on the rail can be customized according to the 
requirements. 

 

 
Figure 7. Overview of the imaging robot 
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The imaging robot traverses a repeating “square wave” pattern from the starting (left) 
position of the rack to the end (right) position of the rack. Each individual cycle of the wave pattern 
(depicted by Figure 8(A)) takes approximately 1.9 min to complete, including horizontal and vertical 
movement time and 12 image captures (each marked by red asterisks within Figure 8(A)). The 
robot’s traversal time per cycle is calculated as 2*X + 14*Y + 12*P = 2*6 s + 14*3 s + 12*5 s = 1.9 
min. Where (X) corresponds to X-axis movement time (6 s), (Y) is Y-axis movement time (3 s), and 
(P) is the capture time (5 s). 

The robot is fitted with an IPC-V380-IPC camera with a horizontal field of view (HFOV) 
between 60-90 degrees. Empirical trials led us to a suitable target distance of 60 cm with lighting 
brightness at 1250 lumens (12-watt) for capture at 1080P and 720P, shown in Figure 8(B). The 
camera lens’s relatively wide HFOV enables wide capture shots which reduces the time taken for 
capture events and their lighting time (P); however, this causes the image edges to distort. To 
mitigate the distortion blur, the captured images have approximately 15% overlap (108 x 230 pixels) 
(Figure 8(C)). The size of the actual image (including overlap) corresponds to approximately 33.87 
cm in width and 17.06 cm in height. 

Previous studies [2, 9, 13] showed that short periods of light stimulate mushroom tissue 
formation. This provides some evidence that the image capture process is likely to be beneficial to 
the mushroom cultivation; however, a yield measurement impact study of this factor caused by our 
imaging robot, will require further study. 

 

 

 

 

 

 

(A) Imaging robot’s directional 
movements, durations, and 

image capture positions 

(B) Optimal distance and 
brightness to 
photograph 

(C) Position and perspective 
of the captured image 

 
Figure 8. Imaging robot traversal pattern and image capture conditions 

 
Step 3/4: Install the imaging robot onto the rails. The imaging robot is composed of a 

microcontroller, sensors, actuators (stepper motors), IP camera, lighting system, and other 
equipment. Each attached composite device has a function, which are listed in Table 2. 

The assembled devices in Table 2 are pictured in Figure 9 – the imaging robot. Under actual 
image capture operation, the imaging robot is contained within a membrane or shielded box to 
extend system lifetime and prevent moisture ingress within the high humidity environment. The 
rails and mechanical contact parts are regularly checked for wear and residue/debris removal. 

Step 4/4: Integrate the imaging robot component into the innovative farm system. The rail 
system and imaging robot are installed into the fruiting chamber, in front of the mushroom 
cultivation rack. One robot can photograph two mushroom racks. Two capture cameras and lighting 
systems are installed (back-to-back) onto the robot platform to capture two racks at once (shown in 
Figure 9(B)). Generally, one fruiting chamber (size 6 x12 m) can contain about 3-4 mushroom racks, 
which requires 2 or 3 imaging robots.  
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Table 2. Imaging robot devices and their functions 

Equipment Device Name and Specification Device Function 
 

 

Arduino ATmega328P, Operating 
Voltage 5V, UNO R3 type SMD 

Control and operate sensor devices 
(Impact switches) and actuators 
(Stepper motors and LED light bulb) 

 
Stepper Motor 42BYGH47-401A 
Nema 17 

Control the movement of the robot on 
the X and Y-axis 

 

Switch Collision Module Sensor 
(Impact Switch Module) 

Determine the collision of the robot at 
the end of X and Y-axis movement 
(change direction of movement) 

 

TB6600 Stepper Motor Driver Motor driver for driving stepper 
motors 

 

Timing belt width 6-8 mm for 3D 
printer 

Used to force the robot to move in the 
X and Y-axis 

 

CCTV MODEL: IPC-V380-IPC AK 
type IP Camera: HD CAMERA V380-
IPC 3 

Photograph mushrooms at HD 
resolution (720p) and communicate 
over the Wi-Fi network. 

 

 LED NEO LDAHV12DH5T 12w, 
1250 lumen, 6500K color temp. 

 

Lighting while the robot is taking 
pictures 

 

Adapter 2000mA (DC 5.5 x 2.5MM) 
12V 5A 

 

Power supply for microcontrollers, 
motors, and sensors 

 

Other accessories of CNC Other accessories to assemble into a 
robot include nuts, screws, etc. 

 

  

(A) The assembled imaging 
robot 

(B) Imaging robot with two 
cameras and lighting 

 
Figure 9. The assembled imaging robot for image capture, shown within a smart farm building 
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The robot’s operation control algorithm is shown in Figure 10. The algorithm starts by 
defining variables (1) such as the robot's direction of movement, shooting time, collision state, etc. 
The next step (2) is to assign input and output signals to the various pins of the Arduino, such as the 
collision detection pin as the input and the motor control pin as the output pin. After assigning 
variables and pins to the microcontroller, the robot begins executing the “square wave” traversal 
pattern. Then, (3) the robot starts to move to the right (X-axis) first. When X-axis rail collision 
impact sensor triggers (the robot has reached the edge of the rail frame) (4), the robot will 
automatically begin moving back in the opposite direction (5). However, if no X-axis rail collision 
occurs, then the robot continues downward (6) in the Y-axis (always moving from top to bottom). 
If the robot collides with the bottom edge while moving downward, it immediately moves in the 
opposite direction (7), like the X-axis. If the robot's motion is normal, it triggers a lighting and image 
capture event, as shown in Figure 8(A). The images obtained at this phase are 720 pixels in width 
and 1280 pixels in length. 

 

 
 

Figure 10. The algorithm for controlling the movement and shooting of the robot 
 
2.4 Fungal disease detection modeling and real-time alert procedure 

 
The images captured at Step 8 (Figure 10) are transferred into a deep learning process to identify 
the fungal disease and alert the farmer. The work leading to this detection system includes (i) image 
preprocessing, (ii) training deep learning models, and (iii) conducting predictive testing trials. 
 
2.4.1 Image preprocessing 

 
The images obtained (720 x 1,280 pixels) by the imaging robot undergo preprocessing operations, 
similarly to Ghavate and Joshi [14] and Pooja et al. [15]. Images are segmented according to the 
number of mushroom bags. Figure 11(A) shows 10 segmented images suitable for further image 
processing (shown by a square frame). Remaining pixels of the image that are not within the 
mentioned square are discarded. 
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(A) Suitable images for cropping (B) Annotated image 
 

Figure 11. Examples of suitable images for cropping and annotated image 
 

Step 1/2: Image segmentation using mask R-CNN. To achieve the image segmentation, 
we have followed the mask R-CNN method [16]. The first step is to annotate a point or region of 
interest in the source images. We use a point and circular region anchor annotation [17-19] to mark 
the center point of the mushroom planting bag within the images. This technique marks the position 
as an annotated polygon mask, as shown in Figure 11(B). These annotations are exported as JSON 
files. Next, the image and JSON file pairs are used  for training and testing by Mask R-CNN (using 
ResNet101 as the default algorithm) to locate the image object. The total number of images used for 
the Mask R-CNN process is 250, divided into two groups: 200 images for training (80%) and 50 
images for testing (20%). As a result, the objects of the image after Mask R-CNN processing are 
entirely shown in circles, as shown in Figure 12(C). 
 

   

(A) An original image (B) Annotated image by R-
CNN 

(C)   Objects masked by R-
CNN 

Figure 12. Examples of suitable images for cropping and annotated image 
 

The results showed that the Mask R-CNN segmentation model can find all objects in the 
mushroom images. After locating the desired objects using the Mask R-CNN technique, the next 
step is creating bounding boxes around the objects. Each block has a size of 224 x 224 pixels (Figure 
13(A)). Next is to crop those bounded boxes into sub-images (the front of the mushroom planting 
bag). The typical number of segmented sub-images is between 10 and 12 per original captured 
image, as shown in Figure 13(B). 

Step 2/2: Collate images to train CNN models for fungal disease detection (prognosis). 
The segmented images are divided into two classes: (i) fungal disease images and (ii) non-fungal 
disease images, with 1,000 images per class. Each image class is divided into two groups, consisting 
of 800 training images (80%) and 200 testing images (20%). The training image group is further 
divided into two subgroups: 520 (65%) retained for training and 120 (15%) separated for model 
validation. The testing image group (200 images) is used to test the independent accuracy of the 
CNN models, depicted in Figure 14. 
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(A) Creating bounding boxes 
with sizes of 224 x 224 pixels 

(B) Cropped images 

 
Figure 13. Creating bounding boxes and cropped (segmented) images 

 

 
 

Figure 14. Clustering data to find a suitable CNN model in fungal prognosis 
 
2.4.2 Model selection 
 
This section presents the results of testing current and popular high-precision CNN models to 
determine which model has the highest accuracy in fungal disease detection and thus prognosis, 
using our collated image dataset. The CNN models trained in this research included DenseNet201 
[20], ResNet50 [21], Inception V3 [22], and VGGNet19 [23]. Implemented is in Python 3 using 
Keras v2.6 [24] and TensorFlow v2.6 [25] code libraries, with parameters specified in Table 3. 
 
Table 3. Parameter settings for CNN model evaluations 

Parameters Value Remark 

TEST EPOCH 30 The number of test epochs 
IMAGE_SIZE 224 x 224 Input images for all models 
BATCH_SIZE 32 Size of the dataset to test the models for each epoch 
MODEL_ EPOCH 300 Number of tests 
ACTIVATION_FUNCTION SIGMOID Suitable for two classes with data in 0, 1  
OPTIMIZERS SGD Stochastic gradient descent (SGD) is a fast algorithm 

which updates parameters at each training step. 
LOSS FUNCTION BINARY_CROSSENTROPY There are only two classes in this research. 

 
Figure 15(A) shows the model learning behavior in terms of accuracy over all epochs, as a 

learning model comparison between DenseNet201, ResNet50, Inception V3, and VGGNet19. 
Figure 15(B) shows each model’s loss function behavior over all epochs. The results illustrate that 
DenseNet201 achieves the highest learning accuracy, and has the least validation loss, with 
relatively low overfitting between training and validation image sets. 
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(A) Accuracy of DenseNet201, ResNet50, Inception V3, and VGGNet19 
 

  

  
(B) Loss rate of DenseNet201, ResNet50, Inception V3, and VGGNet19 

 
Figure 15. The comparison of the learning model of CNNs 

 
Table 4 summarizes the learning performance of all pretrained CNN models on the test 

dataset. As the dataset classes are equally balanced, the accuracy metric is a reliable performance 
measure. Every CNN model performs better than random (i.e., can recognize more than 50% of the 
fungal disease patterns). The model with the highest accuracy in discriminating fungal disease 
patterns from non-disease patterns is DenseNet201 at 89.74%. The InceptionV3 model accuracy is 
second in the order at 87.25%. Others (VGGNet19 and ResNet50) are 83.49% and 74.25%, 
respectively.  
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Table 4. Comparison of different CNNs fungal disease classification efficiency 

CNN model name Class Accurac
y 

Precisio
n 

Recall F1 

DenseNet201 Disease 89.74 91.45 90.25 91.48 
Non-Disease 90.57 92.70 91.74 

ResNet50 Disease 74.25 74.20 75.25 75.23 
Non-Disease 75.24 74.27 74.25 

InceptionV3 Disease 87.25 88.25 85.20 87.26 
Non-Disease 86.23 88.15 87.25 

VGGNet19 Disease 83.49 81.41 8649 84.45 
Non-Disease 86.42 80.40 83.49 

 
Therefore, from these results, DenseNet201 is the most suitable CNN model for the 

detection and prognosis of mushroom fungal disease in our intelligent farm system. 
 
2.5 Procedure for real-time fungal disease prognosis 
 
Experiments in Section 2.4 show that DenseNet201 is the most accurate model for classifying fungal 
disease for our dataset, as captured by the imaging robot. Therefore, this model for fungal disease 
detection (prognosis) is selected to evaluate images from the intelligent farm system in real-time. 
Figure 16 consists of three steps: (i) image retrieval, (ii) Mask R-CNN image segmentation process, 
and (iii) fungal disease detection with alerting.  

First, the image preparation process retrieves the file paths to recent images recorded by 
the imaging robot’s camera(s). The imaging robot uses a file naming convention with current date 
and time, such as 17-02-2022T14:39:04 (DD-MM-YYYYThh:mm:ss). Each image is sent 
individually into the Mask R-CNN process for segmentation (cropping). The cropped image has a 
fixed size of 224 x 224 pixels. The image preparation process is executed within its own Python 
virtual environment, v1.2 [26].  

The newly cropped image’s path is transferred to a prognostic process (DenseNet201) to 
evaluate whether the cropped mushroom image contains fungal disease or no disease. The 
prognostic results are expressed as a percentage (%) of fungal incidence, and directly align to the 
model’s classification percentage (for the disease class).  

If the prognostic result exceeds 50% (indicating fungal disease is present), then the system 
will immediately alert the farmer. The alert sensitivity value can be adjusted according to the 
situation.  

All three of these processes are executed simultaneously, in real-time on the local computer 
system within the smart farm control room. The total time taken is approximately 2 min 3 s from 
the first image captured by the imaging robot to prognosis result and notification sent. 
 
 
3. Results and Discussion 
 

The three components of research work that are evaluated for their effectiveness are as follows: (i) 
cultivation environment control, (ii) imaging robot positioning and data transmission (i.e., image 
capture quality) and (iii) fungal disease detection and reporting. 
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Figure 16. Real-time fungal disease detection/prognosis process, approx. 2:03 min per image 
cycle 

 
3.1 Evaluation of environment control system for mushroom cultivation 

 
Mushrooms thrive on suitable temperature and humidity levels and do not require light. The best 
practice cultivation conditions for temperature, relative humidity, light and planting bag moisture 
varied slightly among our Sajor-caju mushroom consultant farmers. However, an inclusive and 
acceptable range of conditions was agreed upon for the intelligent farm system data collection trial, 
as shown in Table 5. The operating trial period was over the months of April to July 2022, and where 
collected data was trimmed to 91 days (1st-1st). The remaining three sensor categories are 
positioned on or near to the mushroom racks, and specific sensor components are as stated in Section 
2.2. 

The sensor values of the environmental control system were measured and recorded as a 
moving average at a precision granularity of 5-min intervals. Specifically, a data point was recorded 
as the mean average (sensor) value over the previous 5 min for a given sensor category, from the 
available sensors in the data trial building. Each data point represents the status across the fruiting 
chamber. Measured capability (%) in Table 5 reports the percentage of 5-min intervals that fell 
within the acceptable condition range over the data trial period. It was noted that the control system 
initiated the misting and fan actuators with the objective to retain the moving average temperature 
and humidity sensor values within the acceptable ranges. 
 
Table 5. Evaluation trial of environment control system for Sajor-caju mushroom cultivation. 

No
. 

 Environment Sensor 
Category (unit) 

Acceptable Condition 
Range 

Measured Capability 
(%) 

1. Temperature (Celsius: ℃) 25-30 ℃ 100 
2. Humidity (Percentage: %) 60-70 % 100 
3. Lighting (%) 20 – 30 % 100 
4. Moisture in the planting bag (%) 60 – 70 % 98.5 
 Overall   99.6 

 
The experimental results in Table 5 show that the environment control for this innovative 

farm system component performed well over the trial period, with an overall capability of 99.6%, 
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over 26208 data points (91 days). The moisture in the planting bag (%), which can be thought of as 
localized humidity, was reported as a capability loss of 1.4995%, or 393 unique time-intervals 
(32.75 h) outside of the acceptable range. Some loss was expected, as its sensor value change is a 
by-product of (not directly controlled by) the control system. Further, localized humidity varies over 
time and across the cultivation racks (as water drains and passes the sensor, etc.); control at this 
granularity remains open to future work. 
 
3.2 Evaluation of imaging robot 

 
The primary function of the imaging robot is to collect images of the front of each mushroom bag 
and transfer those images to the service for fungal disease detection. Therefore, the imaging robot’s 
motion, imaging, and image transmission capabilities are evaluated, as shown in Table 6. 
Percentages of successful operations are reported, i.e., did not exceed the stated error condition. 

Measurements of the robot’s operations were collected over multiple day-time trial periods 
to verify that the programmed tasks were completed as intended. One thousand data points per 
category were recorded. Positioning in X and Y-axes (1,2) and speed control (5) were concerned 
with capture image framing. Compliance of (1,2) were measured as the distance of the robot’s 
stopping point from each expected position, dictated by the “square wave” pattern cycle. Movement 
speed control (5) was a measure of the consistency of time taken to complete each pattern cycle; 
this measurement was concerned with model drift, as caused by inertia or mechanical (mobility) 
faults such as rail traction and belt operation problems. 
 
Table 6. Performance analysis of imaging robot 

No. Operation of Imaging Robot Error 
Condition 

Success Rate 
Operation (%) 

1. Ability to precise position in X-axis ±2 cm 99.8 
2. Ability to precise position in Y-axis ±2 cm 99.6 
3. Ability to capture images 0 images 100 
4. Lighting control for robot photography 0 images 100 
5. Movement speed control in both X and Y 

axes 
±5 seconds 99.5 

6. Ability to transmit image data 0 images 99.4 
 Overall  99.7 

 
Image capture ability (3) was measured by the quantity of image capture events per square 

wave cycle (against the 12 expected), and lighting control (4) error was recorded when a capture 
event was not illuminated. Similarly, image data transmission (6) was measured by the quantity of 
image files created in the remote directory (transmitted via wireless communication). 

The results in Table 6 show that the overall operational efficiency of the imaging robot 
during the verification trial was 99.7%. There was some minor loss in motion and position 
operations (1,2 and 5), which remains open to further control improvement. There was also minor 
loss in data transmission of image files (99.4%), which we believe was caused by frequency signal 
disturbances, (such as during high humidity periods or signal interruptions from other devices), or 
related to receiver-transmitter distance variations during robot traversals. 
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3.3 Evaluation of real-time fungal disease prognosis system 
 
The real-time fungal disease prognosis system (Figure 16) analyzes captured images of the front of 
the mushroom planting bags to determine whether fungal disease is present (see Section 2.4); if so, 
a warning notification is delivered (see Section 2.5). The prognosis (detection) label correctness and 
notification correctness are imperative to the prognosis system’s success. Therefore, the prognosis 
system’s output images and labels were collected after a 1-month period of real-time operation and 
13,500 images were retrieved. Each image (224 x 224 pixels) was cropped (segmented) and labeled 
(by the DenseNet201 CNN model), and then those image labels were individually verified. The 
resultant (large) test dataset was re-evaluated by the previously trained DenseNet201 (under test) to 
reproduce the measured performance of the actual real-time prognosis system during that period. 
Table 7 reports those results. Of most interest is the fungal disease category (positive prognosis), 
with precision of 94.35%, the recall with 83.98%, and the F1 with 89.47%. The F1 metric equation 
is a balanced measurement of precision and recall factors, which dropped by 2.01%, from 91.48% 
(early test trial, n=400) to 89.47% (real-time test trial, n=13500). 
 
Table 7. Real-time fungal disease prognosis results 

 Precision (%) 
 

Recall (%) F1 (%) 

Disease 94.35 
 

83.98 89.47 

No disease 86.24 93.86 
 

90.35 

 
 
4. Conclusions 
 
A major source of concern for professional mushroom cultivation farmers is the production cost of 
crop contamination or crop loss caused by a fungal disease. Inhalation of mushroom spores, like 
fungal disease spores, directly affects farmer health. Thus, automation of crop inspections with 
cultivation environment control helps to mitigate both concerns and is the subject of this research – 
an innovative and intelligent farm system. The automated system consists of three parts: (i) an 
intelligent environment control farm component, (ii) an imaging robot, and (iii) a real-time fungal 
disease prognosis and early warning system. Each component was evaluated.  
  The environment control results reported 99.6% measured capability to retain well-defined 
nominal range conditions over 3-months, which we regard as precise control and excellent 
capability performance for Sajor-caju mushroom cultivation. The imaging robot was verified under 
trial with overall operational efficiency at 99.7% -- effective performance, with very minor losses in 
motion, position control and wireless data transmission. The real-time prognosis and alert system 
for fungal disease performance over a 1-month dataset was verified at 89.47% F1 score (94.35% 
precision), marking a minor overall drop of ~2%, from its initially trained-test conditions. While 
improvements per component were identified as the research proceeded, we regard these controlled 
trial results as evidence of excellent overall performance by the complete and automated system. 
  The developed system now operates twice daily during the daylight hours, which allows it 
to identify fungal disease typically within the 6 to 12-h growth-phase and avoids impeding the other 
farm operations. The farmers can reduce their time exposed to health-threatening mushroom spores, 
and more comfortably monitor the prognosis notification images sent to their smartphones, and 
check the farm surveillance videos and software dashboard to track the farm operations and 
environment status. The early notification, isolation and treatment of fungal disease infections has 
helped to reduce wide-spread crop loss. Consequently, time-spent replacing mushroom batches is 
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reduced and therefore savings can begin to increase for year-on-year (replacement) mushroom 
production costs. Risk of disease, such as lung abscesses, lung diseases, and allergies are further 
lowered as a result. 
 In the future, we intend to reapply the proposed system to further mushroom varieties and 
fungal disease concerns using the racked farm formation, by changing the deep learning image 
dataset, in order to help alleviate these challenges among more mushroom farmers. 
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