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Abstract 
 
Rheumatoid arthritis (RA) is a complex autoimmune disorder predominantly affecting joints, 
with its etiology and response to treatment still not fully understood despite extensive 
historical documentation. This study aims to shed light on the differentially expressed 
genes (DEGs) associated with RA progression, potentially identifying new drug targets and 
management strategies. This study analyzed gene expression data (GSE193193) from the 
Gene Expression Omnibus (GEO) database, identifying 3672 significant DEGs out of 
36107 initially retrieved genes. Among these, 283 genes were up-regulated and 360 were 
down-regulated. Gene enrichment analysis was performed to uncover relevant gene 
ontology terms and pathways. Subsequently, network construction and analysis, along with 
hub gene prediction using Cytoscape's MCODE and CytoHubba plugins, were conducted. 
Key genes identified in this study include HBB, ALAS2, GATA1, AHSP, HBG1, HBG2, 
HBD, KLF1, SLC4A1, EPB42, ZMYND10, DNAJC7, HYDIN, LRRC6, FN1, NCAM1, 
FASLG, CTCF, SMAD4, and STAT1. These genes are implicated not only in RA but also 
in other diseases, presenting them as potential therapeutic targets. Additionally, three 
transcription factors (GATA1, NFKB1, and RELA) and one miRNA (has-mir-27a-3p) were 
identified as key regulators of these hub genes.  In conclusion, this study not only enhances 
our understanding of the molecular mechanisms underlying RA but also identifies several 
critical DEGs and regulatory factors that could serve as promising targets for therapeutic 
intervention. The identification of these genes and regulatory elements paves the way for 
the development of targeted treatments, which could significantly improve disease 
management and patient outcomes. Future research focusing on these identified targets 
may lead to innovative strategies for combating RA and potentially other autoimmune 
disorders, thereby offering new hope to patients affected by these conditions. 
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1. Introduction 
 
Rheumatoid arthritis (RA) is a complex autoimmune disease primarily affecting joints, 
characterized by the immune system's erroneous attack on the body's joints, leading to 
inflammation, thickening of the joint linings, and subsequent swelling and pain. This 
condition predominantly affects small peripheral joints initially and can progress to involve 
proximal joints if left untreated, commonly impacting the joints of the hands, feet, wrists, 
elbows, knees, and ankles (Bullock et al., 2018). Individuals with RA typically experience 
morning stiffness in their affected joints lasting for more than 30 min (Tanaka, 2020). Extra-
articular manifestations are also prevalent, with rheumatoid nodules and interstitial lung 
disease (ILD) being notable complications (Chauhan et al., 2022). 

The global incidence of RA has significantly increased from 567,462.89 cases in 
1990 to 1,074,390.80 cases in 2019, with an age-standardized rate (ASR) of 13 per 
100,000. RA affects about 0.5% to 1.0% of the adult population in developed countries 
(Gabriel & Michaud, 2009), with women being two to three times more likely than men to 
develop the condition (Crowson et al., 2011). RA can occur at any age but predominantly 
affects individuals between 25 and 50 years old (Cassotta et al., 2020). The etiology of RA 
involves a combination of genetic factors and autoantibodies. Aberrations in the adaptive 
immune system led to the development of autoantibodies, such as rheumatoid factors (RFs) 
and anti-modified protein antibodies (AMPA) (Scherer et al., 2020). Patients with 
seropositive RA inherit approximately 40% to 65% of the disease from their ancestors, while 
those with seronegative RA inherit about 20% (Kłodziński & Wisłowska, 2018; Chauhan et 
al., 2022).  Approximately 80% of RA patients have RF, and 60% to 70% have antibodies 
to cyclic citrullinated peptide (CCP), though RF can indicate other conditions as well. 
Specific HLA-DRB1 alleles, particularly HLA-DRB104, HLA-DRB101, and HLA-DRB1*10, 
are associated with RA, with 80% of ACPA-positive RA patients carrying the "shared 
epitope" sequence coded by these alleles (Derksen et al., 2017; Espina et al., 2019). 

Autoantibodies and autoimmunity can be present before clinical symptoms of RA 
appear, though not all patients with autoantibodies develop noticeable symptoms. In some 
cases, autoimmunity leads to immune-mediated inflammation, primarily in the synovium 
(Chauhan et al., 2022). Individuals with RA show an increased presence of autoreactive T 
and B lymphocytes in their synovial tissues. Normally, T cells exhibit tolerance to 
autoantigens, but disruption of this tolerance activates autoreactive T cells, which in turn 
stimulate B cells to produce autoantibodies (Tanaka, 2020). Pro-inflammatory cytokines 
such as TNF-α and IL-1 are critical in chronic joint inflammation and subsequent bone and 
cartilage damage, as evidenced by research using animal models (Lubberts & van den 
Berg, 2013). 

The treatment of RA primarily involves the early initiation of disease-modifying 
antirheumatic drugs (DMARDs) to achieve minimal disease activity or remission. Commonly 
used DMARDs include methotrexate, hydroxychloroquine, sulfasalazine, and leflunomide. 
Biologic DMARDs, such as TNF inhibitors (etanercept, infliximab), IL-6 inhibitors 
(tocilizumab), T-cell co-stimulation inhibitors (abatacept), and B-cell depleting monoclonal 
antibodies (rituximab), are also utilized. Targeted synthetic DMARDs like Janus kinase 
(JAK) inhibitors (tofacitinib, baricitinib, upadacitinib) provide additional treatment options. 
NSAIDs help alleviate joint inflammation and pain, while corticosteroids are often 
administered temporarily in newly diagnosed patients with high disease activity. Despite 
these treatments, long-term management remains challenging, with many patients requiring 
continuous medication to maintain disease control (Chauhan et al., 2022). Early and 
aggressive treatment strategies can lead to improved outcomes, reduced joint damage, and 
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better quality of life for patients. Disease activity is commonly assessed using indices such 
as the SDAI, CDAI, and DAS28, which guide treatment decisions and adjustments (Tanaka, 
2020). 

Despite advances in treatment, the etiology of RA is still not fully understood, 
necessitating further research. RA's genetic components and the role of autoantibodies, 
such as rheumatoid factors (RFs) and anti-modified protein antibodies (AMPA), are key 
areas of interest. Genetic risk factors, including specific HLA-DRB1 alleles, are implicated 
in RA, with these alleles coding for a sequence known as the "shared epitope," present in a 
significant proportion of RA patients. Understanding the genetic and molecular basis of RA 
is crucial for developing targeted therapies and improving patient outcomes. 

Previous work on RA genomics using computational approaches has provided 
valuable insights into the genetic and molecular mechanisms underlying the disease. Given 
the complexity of rheumatoid arthritis (RA) and the challenges in understanding its etiology 
and response to treatment, this study aimed to elucidate the differentially expressed genes 
(DEGs) associated with RA progression, potentially revealing new drug targets and 
management strategies using a comprehensive bioinformatics approach utilizing gene 
expression datasets via functional enrichment and network analysis. 
 

2. Materials and Methods 
 
2.1 Retrieval of GEO dataset 
 
The dataset used for analysis was freely available and was retrieved from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/). The keyword ‘Rheumatoid arthritis’ was used 
to search in GEO datasets and after a careful review, the gene expression profile 
GSE193193 was selected from the resulting datasets (Fan et al., 2022). The dataset chosen 
was based on the platform GPL24676, Illumina NovaSeq 6000 (Homo sapiens).  
 
2.2 Processing of data for differentially expressed genes 
 
The selected dataset is a curated dataset that comprises the Differentially Expressed Genes 
(DEGS). The analysis of DEGs involved several critical steps. Initially, raw RNA-seq data 
underwent preprocessing to eliminate low-quality reads and adapter sequences, followed 
by quality control checks to ensure data integrity. Normalization was performed using the 
trimmed mean of M-values (TMM) method to account for differences in sequencing depth 
and RNA composition across samples. From the total set of DEGs, significant genes were 
filtered based on the adjusted probability value (p value) which is less than 0.05. From the 
significant genes, up-regulated and down-regulated genes were detected and categorized 
based on the cut-off criteria of log fold change (log2fc) values such as log2fc >1.5 and <-
1.5, respectively. These DEGs were analyzed further for their functional enrichment.  
 
2.3 Analysis of differentially expressed genes (DEGs) for functional 
enrichment and pathway identification 
 
DEGs identified as up-regulated and down-regulated were subjected to functional and 
enrichment analysis using the Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) tool. The process begins with the user inputting a list of gene identifiers, 
which DAVID maps to a common gene set. Users can specify a custom background set or 
use the default genomic background to control for biases. DAVID then groups genes into 

https://www.ncbi.nlm.nih.gov/geo/
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clusters based on shared functional annotations, utilizing the kappa statistic to identify 
functionally related groups. For Gene Ontology (GO) analysis, DAVID identifies 
overrepresented GO terms among the input genes using the modified Fisher’s Exact Test 
(EASE score) to calculate the significance of enrichment and derives enrichment scores to 
represent the relative importance of each term. Pathway analysis maps genes to known 
biological pathways, such as KEGG and REACTOME, performing enrichment analysis to 
highlight significant pathways involved in the gene list. The results are visualized through 
various charts and tables, providing a comprehensive overview of the functional roles of the 
genes, thereby integrating multiple sources of annotation data for a thorough understanding 
of the biological context of DEGs (Huang et al., 2009). This tool provides insights into Gene 
Ontology (GO) terms, including Molecular Function (MF), Biological Process (BP), and 
Cellular Component (CC), as well as pathway information sourced from databases like 
KEGG and Reactome. Pathway analysis revealed the involvement of DEGs in various 
pathways related to cancer, diseases, drugs, and chemical substances. 
 
2.4 Construction of protein-protein interaction (PPI) network 
 
The PPI networks of the DEGs were predicted and constructed using an online tool STRING 
(https://string-db.org/) for retrieving the interacting genes/proteins (Szklarczyk et al., 2015). 
The interactions in STRING are derived from several sources, including direct (physical) 
and indirect (functional) associations. STRING utilizes a combination of text mining, 
experimental data, computational prediction methods, and public databases to score and 
compile these interactions. The network is constructed by assigning confidence scores to 
each interaction based on the evidence supporting it. High-confidence interactions are used 
to build a detailed network, providing insights into how proteins may collaborate to perform 
biological functions. The PPI network generated by STRING aids in identifying key proteins, 
understanding their interactions, and exploring their potential roles in disease mechanisms. 
Based on the STRING tool, the PPI networks of the DEGs were constructed separately as 
up-regulated and down-regulated gene networks 
 
2.5 Screening of PPI network for modules and hub genes analysis 
 
Cytoscape version 3.9.1, an open-source software, was used for visualizing the networks 
and integrated networks to find their molecular interactions and associated biological 
pathways. Subsequently, the PPI network retrieved from the STRING database was 
exported to Cytoscape and visualized for further analysis (Shannon et al., 2003). MCODE 
(Molecular Complex Detection) uses a graph-theoretical approach to find densely 
connected regions in large protein interaction networks, which are often indicative of 
functional modules or protein complexes. The algorithm assigns a score to each node 
(protein) based on the density of its neighborhood and then iteratively identifies and scores 
clusters. Higher scores indicate regions of higher connectivity, suggesting a potential 
biological significance.  Additionally, the CytoHubba plugin was used to identify hub genes 
within the PPI network. CytoHubba integrates 12 distinct topological algorithms to rank 
nodes (proteins) based on various centrality measures, such as Degree, Betweenness, 
Closeness, and others. This multi-algorithm approach provides a robust identification of hub 
genes, which are proteins that play central roles in the network and are likely crucial for 
maintaining the network's integrity and function. By analyzing the top-ranked nodes, 
CytoHubba helps in pinpointing key regulatory proteins that might serve as potential 
biomarkers or therapeutic targets in the context of the studied disease. Combining the 

https://string-db.org/
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results from MCODE and CytoHubba allows for a comprehensive understanding of the PPI 
network, highlighting both densely interconnected clusters and pivotal hub genes that could 
be integral to disease mechanisms. This dual approach enhances the reliability of identifying 
significant proteins and protein complexes, providing deeper insights into the molecular 
underpinnings of the disease under investigation. 
 
2.6 Gene-disease association analysis 
 
DisGeNET, an online database housing comprehensive collections of genes and variants 
linked to human diseases, was utilized to explore the connection between hub genes and 
rheumatoid arthritis. It employs a systematic approach to curate and annotate gene-disease 
associations, incorporating data from literature mining, genome-wide association studies 
(GWAS), and other curated databases.  
 
2.7 Identification of miRNAs targeting the hub genes 
 
miRNet 2.0, a miRNA-centric network visual analytics platform was used to discover the 
miRNAs and transcription factors targeting the hub genes (Fan et al., 2016).  This tool 
employs a combination of network-based and sequence-based algorithms to elucidate 
microRNA (miRNA) interactions and their regulatory roles. The relationship between 
transcription factors and the hub genes were analyzed using the TRRUST (Transcriptional 
Regulatory Relationships Unraveled by Sentence-based Text mining) database in miRNet. 
This integrates natural language processing techniques with curated literature data to 
extract transcriptional regulatory relationships. It systematically analyzes vast amounts of 
text from scientific literature to identify and annotate regulatory interactions between 
transcription factors (TFs) and their target genes. By parsing and extracting relevant 
information from sentences, TRRUST constructs a comprehensive regulatory network that 
elucidates the complex regulatory mechanisms governing gene expression.  
 

3. Results and Discussion 
 
3.1 Data acquisition and analysis of DEGs 
 
In this study, the RNA sequencing dataset GSE193193, containing 5 rheumatoid arthritis 
(RA) samples and 10 control samples, was obtained from the GEO database and analyzed 
to screen the differentially expressed genes (DEGs) in rheumatoid arthritis (Shannon, 2003). 
Out of 36,107 DEGs found in the dataset, 3,672 genes were significant based on the p-
value < 0.05. Among these, 283 genes were significantly up-regulated and 360 genes were 
significantly down-regulated, based on log2fc values > 1.5 and <-1.5, respectively. A 
comparable methodology was employed in a study aimed at screening variously expressed 
lncRNAs implicated in regulating the intrinsic apoptosis pathway in colorectal cancer (Akbari 
et al., 2020), as well as in another study focused on identifying hub genes linked to human 
osteoarthritis cartilage (Sunkar et al., 2022). A logarithmic value within the range of 1.1 to 
1.5 is commonly regarded as a sensible threshold option. The up-regulated and down-
regulated p-values and log2fc values are provided in Table 1.  
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Table 1. List of differentially expressed genes 
 
(a) List of up-regulated genes: 

gene_name log2(fc) pval Regulation 

RNU11 4.58 0.00 up 

HBD 9.56 0.00 up 

CA1 7.78 0.00 up 

ALAS2 7.69 0.00 up 

HBG1 6.10 0.00 up 

HBA1 6.15 0.00 up 

SAMD14 2.32 0.00 up 

SLC4A1 6.37 0.00 up 

HBB 6.68 0.00 up 

HBA2 5.78 0.00 up 

SELENBP1 6.60 0.00 up 

OSBP2 4.49 0.00 up 

AHSP 9.37 0.00 up 

MYL4 8.00 0.00 up 

SNCA 4.35 0.00 up 

HBG2 6.40 0.00 up 

KRT1 6.32 0.00 up 

RUNDC3A 6.88 0.00 up 

SLC6A8 5.34 0.00 up 
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Table 1. List of differentially expressed genes (continued) 
 
(b) List of down-regulated genes: 

gene_name log2(fc) pval regulation 

FAT4 -2.33 0.00 down 

AP000654 -3.22 0.00 down 

KLRC4 -2.43 0.00 down 

PCDHGB7 -3.18 0.00 down 

LINC00299 -1.77 0.00 down 

GNLY -1.88 0.00 down 

AC034102 -2.46 0.00 down 

KLRC3 -2.62 0.00 down 

OR2L6P -3.25 0.00 down 

AC243829 -2.44 0.00 down 

KLRC2 -3.05 0.00 down 

ENPP5 -1.79 0.00 down 

OR2L2 -3.97 0.00 down 

AC006033 -1.72 0.00 down 

BNC2 -2.16 0.00 down 

GPR141BP -2.11 0.00 down 

AL365475 -1.92 0.00 down 

LINC00893 -1.72 0.00 down 

MIR181A2HG -2.58 0.00 down 

 
3.2 Functional enrichment of DEGs 
 
Functional annotation of DEGs was conducted using the DAVID online software, assessing 
gene ontology terms (biological process, molecular function, cellular component) and 
pathway enrichment (KEGG, REACTOME) for both up-regulated and down-regulated 
genes (Ma et al., 2021). 
 
3.2.1 Up-regulated genes 
 
Analysis of biological processes (BP) revealed that up-regulated genes were primarily 
associated with innate immune response, negative regulation of apoptotic process, and cell 
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adhesion. In terms of molecular function (MF), these genes were notably enriched in 
identical protein binding and zinc ion binding. Regarding cellular component (CC), up-
regulated genes were predominantly associated with the plasma membrane, cytosol, and 
extracellular exosome. KEGG pathway analysis indicated their involvement in 
transcriptional mis-regulation in cancer and phagosomes, while REACTOME pathways 
highlighted roles in the immune system and innate immune system (Yap et al., 2018). These 
results clearly indicate the importance of the innate immune system in RA development and 
progression.  
 
3.2.2 Down-regulated genes 
 
Down-regulated genes showed enrichment in biological processes related to cell adhesion, 
nervous system development, and homophilic cell adhesion via plasma membrane 
adhesion molecules. Molecular function analysis revealed significant enrichment in calcium 
ion binding, while cellular component analysis linked these genes with the plasma 
membrane and integral components of the membrane. KEGG pathway analysis identified 
involvement in antigen processing and presentation and natural killer cell-mediated 
cytotoxicity, while REACTOME pathways highlighted roles in signal transduction and 
developmental biology (Zhu et al., 2023). These findings are consistent with reports 
suggesting the critical role of signal transduction pathways in RA pathogenesis. 

The enrichment analysis revealed significant associations between DEGs and 
specific biological processes and pathways, shedding light on their potential involvement in 
RA pathophysiology. The up-regulated genes underscore the dysregulation of immune 
responses and apoptotic processes, consistent with the inflammatory nature of RA. 
Conversely, the down-regulated genes suggest alterations in cell adhesion and signalling 
pathways, reflecting disruptions in tissue homeostasis and immune regulation observed in 
RA. These findings provide valuable insights into the molecular mechanisms underlying RA 
pathogenesis and offer potential targets for therapeutic intervention. 
 
3.3 PPI network construction 
 
PPI networks were constructed separately for up-regulated and down-regulated genes 
using the STRING database and the results are provided in Figure 1. The PPI network for 
up-regulated genes comprised 251 nodes and 647 edges, with an average node degree of 
5.16 and an average local clustering coefficient of 0.416 with enrichment value <1.0e-16. 
Conversely, the PPI network for down-regulated genes consisted of 232 nodes and 199 
edges, with an average node degree of 1.72 and an average local clustering coefficient of 
0.387.  

The construction of PPI networks offers insights into the molecular interactions 
underlying RA pathogenesis. A higher average node degree within the PPI network for up-
regulated genes may indicate increased connectivity between proteins in that network and 
their involvement in several interactions. This heightened connectivity may reflect the 
dysregulation of signalling pathways and biological processes associated with RA 
pathophysiology. Conversely, the lower average node degree for the PPI network for down-
regulated genes might mean less connectivity among proteins in that network, indicating 
reduced functional interaction among proteins. Disruption of protein-protein interactions 
might be a factor in altered cellular processes and pathways leading to RA. 
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Figure 1. PPI network constructed using STRING database (a) Up-regulated genes 

network (b) Down-regulated genes network 
 

Another measure that shows the structural properties and organization of the 
network is the average local clustering coefficient, which indicates the density of 
connections among a protein's neighbours in the network. The high average local clustering 
coefficient in the PPI networks might suggest a presence of connected regions or modules 
in both networks. These modules may represent functional units or protein complexes 
involved in some biological processes relevant to RA (Bader & Hogue, 2003; Rees et al., 
2010; Hu et al., 2017; Osterman et al., 2020).  Overall, the development and analysis of PPI 
networks provide a systematic framework for exploring the molecular mechanisms 
underlying RA and identifying potential therapeutic targets. Further investigation of the 
proteins and specific interactions in these networks will help to understand their role in the 
pathogenesis and progression of RA. 
 
3.4 Screening of PPI for modules and hub genes analysis 
 
The PPI networks obtained from STRING were visualized in Cytoscape to identify hub 
genes and functional modules within the network. The MCODE plugin was utilized to identify 
clusters of closely interlinked nodes, representing potential functional modules or complexes 
(Figure 2) (Bader & Hogue, 2003). 
 
3.4.1 Up-regulated genes 
 
Among the seven clusters detected in the up-regulated gene network, a particularly 
significant cluster encompassed 13 nodes and 75 edges, boasting the highest cluster score 
of 12.500 (Bader & Hogue, 2003; Rees et al., 2010; Osterman et al., 2020; Yu et al., 2022). 
These clusters likely represent functional modules intricately involved in biological 
processes pertinent to RA pathogenesis. Subsequent CytoHubba analysis spotlighted 10 
hub genes, including HBB, ALAS2, GATA1, AHSP, HBG1, HBG2, HBD, KLF1, SLC4A1, 
and EPB42, pivotal in driving disease processes (Osterman et al., 2020). 
 

(a) (b) 
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Figure 2. Module analysis using MCODE for cluster identification a) Up-regulated genes 

b) down-regulated genes 
 
3.4.2 Down-regulated genes 
 
Similarly, among the six clusters identified in the down-regulated gene network, a cluster 
with 4 nodes and 5 edges, boasting the highest cluster score of 3.333, was deemed 
noteworthy. CytoHubba analysis unveiled 10 hub genes, such as ZMYND10, DNAJC7, 
HYDIN, LRRC6, FN1, NCAM1, FASLG, CTCF, SMAD4, and STAT1, implicated in RA 
pathogenesis (Osterman et al., 2020). 

These clusters often represent functional modules or complexes of proteins that 
collaborate in specific biological processes or pathways, aiding in the understanding of the 
network's functional organization. MCODE simplifies these networks by highlighting regions 
of high connectivity, facilitating the focus on biologically relevant subnetworks. This 
simplification enhances the interpretation of complex data (Bader & Hogue, 2003). 

In the context of disease, identifying dysregulated or central protein modules within 
the PPI network can aid in prioritizing potential drug targets. MCODE can pinpoint these key 
modules, enabling researchers to concentrate their efforts on understanding and targeting 
specific components of the network (Rees et al., 2010), thereby supporting the discovery of 
novel targets in RA. CytoHubba, an additional plugin within Cytoscape, integrates 12 distinct 
algorithms and provides a user-friendly interface for analyzing the topology of PPI networks. 
This tool was utilized to predict hub genes in the study. CytoHubba analysis was performed 
on the resulting clusters of MCODE and the entire PPI network separately. The resulting 
genes from each CytoHubba algorithm were compared, yielding a list of 8 common genes 
from the up-regulated gene network and 4 common genes from the down-regulated gene 
network (Figure 3), which were further compared with the results of MCODE. The same 
methodology was applied to the entire PPI network, and the results were compared with the 
previous CytoHubba findings. The analysis revealed a total of 20 hub genes, with 10 genes 
being up-regulated (HBB, ALAS2, GATA1, AHSP, HBG1, HBG2, HBD, KLF1, SLC4A1,  
 

a) b) 
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Figure 3. Common hub genes in up-regulated network from CytoHubba on MCODE 
 
EPB42) and 10 genes being down-regulated (ZMYND10, DNAJC7, HYDIN, LRRC6, FN1, 
NCAM1, FASLG, CTCF, SMAD4, STAT1). These findings underscore the intricate 
interactions and significance of these genes in disease processes. 

The identified hub genes, whether up-regulated or down-regulated, are likely 
instrumental in dysregulated biological processes fuelling RA progression. Targeting these 
hub genes holds promise for uncovering novel therapeutic avenues in RA management. 

The integration of MCODE and CytoHubba analyses offers a holistic understanding 
of network topology and the identification of biologically relevant components. These 
findings underscore the intricate interplay among genes implicated in RA pathophysiology, 
offering valuable targets for therapeutic intervention. Further exploration of the functional 
roles and interactions of these hub genes within the PPI network is warranted to elucidate 
their precise contributions to RA pathogenesis. 
 
3.5 Gene expression validation and disease association analysis 
 
The study delved into the intricate relationship of the identified hub genes in rheumatoid 
arthritis, shedding light on their roles and potential implications in the disease's onset and 
progression. Haemoglobin subunit beta (HBB) is pivotal in oxygen transport and is also 
related to conditions like sickle cell anaemia and beta-thalassemia. Notably, HBB's role in 
musculoskeletal diseases like knee joint valgus deformity indirectly associates it with RA 
(Rees et al., 2010). ALAS2 is exclusively found in developing red blood cells, playing a role 
in heme formation during erythropoiesis. It is primarily linked to erythrocyte differentiation 
and homeostasis. GATA1, a transcriptional regulator, aids in erythroid development. It is 
directly involved in activating genes crucial to erythroid differentiation (Yu et al., 2002). 
Interestingly, GATA1 is associated with musculoskeletal and skin diseases, including RA, 
positioning it as a pivotal gene in RA's pathology. 

AHSP protects free alpha-haemoglobin from precipitation, modulating states of 
alpha-haemoglobin excess such as beta-thalassemia. Haemoglobin subunit gamma-1 
(HBG1) and haemoglobin subunit gamma-2 are essential for foetal haemoglobin, which 
usually gets replaced by adult haemoglobin post birth (Steinberg et al., 1997). Haemoglobin 
subunit delta (HBD) functions similarly to HBB, being key in oxygen transport. It is also 
associated with beta-thalassemia. Krueppel-like factor 1 (KLF1) is a transcription regulator 
of erythrocyte development, with a role in switching between foetal and adult globin. The 
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Solute Carrier family 4-member 1 (SLC4A1) gene helps in maintaining the body's correct 
acid levels. Mutations in this gene can lead to diseases impacting red cell membrane 
stability and kidney acid secretion. Erythrocyte membrane protein band 4.2 (EPB42) may 
regulate the association of protein 3 with ankyrin, influencing erythrocyte shape and 
mechanical properties. ZMYND10, a potential tumor suppressor, is crucial for dynein motor 
assembly. DNAJC7, another hub gene, encodes a member of the DNAJ heat shock protein 
40 family, playing a role in cellular responses to stress. 

HYDIN is essential for ciliary motility, mutations of which cause primary ciliary 
dyskinesia. LRRC6 is involved in dynein arm assembly, being crucial for the formation and 
motility of spermatozoal flagella (Horani & Ferkol, 2018). Fibronectin 1 (FN1) has 
multifaceted roles ranging from cell adhesion, and wound healing to maintenance of cell 
shape. Its involvement in musculoskeletal diseases, particularly RA, highlights its 
significance. Neural Cell Adhesion Molecule 1 (NCAM1) participates in cellular interactions 
crucial for development and differentiation processes. It contributes to the proliferation of T 
cells, B cells, and NK cells, which are essential for immune surveillance. The Fas ligand 
(FASLG) gene, belonging to the tumor necrosis factor superfamily, is pivotal in apoptosis 
and is associated with conditions such as systemic lupus erythematosus (Firestein et al., 
2017). CCCTC-binding factor (CTCF) is a transcriptional regulator with potential links to 
invasive breast cancers, prostate cancers, and Wilms' tumours. The SMAD4 gene, part of 
the TGF-β pathway, regulates cell growth and division, playing a role in the development of 
many body systems. Notably, it is indirectly associated with RA's onset (van der Pouw Kraan 
et al., 2003; Massagué, 2012; Yoshida et al., 2012; Ivashkiv & Donlin, 2014). 

Signal transducer and activator of transcription 1 (STAT1) is responsible for 
coordinating cellular reactions to interferons and various cytokines (Ivashkiv & Donlin, 
2014).  It is directly linked to RA, with studies supporting its elevated expression in RA 
synovium. Several hub genes, including EPB42, HBB, SLC4A1, and KLF1, are related to 
hereditary hemolytic anaemia. Others, such as GATA1, are tied to conditions like X-linked 
dyserythropoietic anaemia. Intriguingly, genes like STAT1, FASLG, FN1, NCAM1, and 
GATA1 are directly associated with RA, as supported by various studies (Fan et al., 2016). 
 The hub genes identified were further scrutinized to establish a direct connection 
with rheumatoid arthritis using the DisGeNET database. The outcomes revealed that the 
STAT1, FASLG, FN1, NCAM1, and GATA1 genes were directly associated with RA (Table 
2). Supporting evidence for the involvement of the STAT1 gene in RA includes a study by 
Yoshida et al. (2012) which noted significantly higher expression levels of signal transducer 
and activator of transcription 1 in the synovium of RA compared to osteoarthritis. 
Additionally, van der Pouw Kraan et al. (2003) demonstrated the prominent role of activated 
STAT1 pathways in rheumatoid tissues. Zhang et al. (2019) suggested that increased 
expression of IL7R and STAT1 in synovial tissues might be linked to RA, and Wang et al. 
(2018) found that E2F2 directly regulates STAT1 pathways, exacerbating the inflammatory 
phenotype in RA synovial fibroblasts. Lee et al. (2007) conducted a study genotyping 67  
single nucleotide polymorphisms within the STAT1 and STAT4 regions in Korean patients 
with RA, further supporting the association. 

 Regarding the FASLG gene, an association between FASL rs763110 
polymorphisms and RA susceptibility in Asians through meta-analysis (Lee et al., 2015) was 
revealed. A study found that polymorphisms in the FasL gene, related to apoptosis, may 
increase genetic susceptibility to RA in the Turkish population (Yıldır et al., 2013).  For the 
FN1 gene, Yan et al. (2013) suggested that PADI4 in the RA synovium may contribute to 
cartilage destruction through the citrullination of FN. Silva et al. (2009) proposed that  
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Table 2. Gene-disease association 
Gene 

Symbol 
Gene Name Gene ID Disease Class Semantic 

Type 
N.genes d N.SNPs d Score Functions Other Diseases 

Associated 

STAT1 signal transducer 
and activator of 
transcription 1 

6772 Skin and Connective 
Tissue Diseases; 
Musculoskeletal Diseases; 
Immune System 
Diseases 

Disease or 
Syndrome 

2723 2387 0.4 cellular response to 
interleukin-6, response to 
interleukin-6 

Precursor T-Cell 
Lymphoblastic Leukemia- 
Lymphoma; 
Immunodeficiency 31B 
(IMD31B); Immunodeficiency 
31A (IMD31A); 
Immunodeficiency 31C 
(IMD31C) 
 

FASLG Fas ligand 356 Skin and Connective 
Tissue Diseases; 
Musculoskeletal Diseases; 
Immune System 
Diseases 

Disease or 
Syndrome 

2723 2387 0.34 tumor necrosis factor 
receptor binding, protein 
binding, negative 
regulation of transcription 
from RNA polymerase II 
promoter, cellular 
response to interferon- 
gamma 
 

Autoimmune 
lymphoproliferative 
syndrome 1A (ALPS1A); 
systemic lupus 
erythematosus (SLE) 

FN1 Fibronectin 1 2335 Skin and Connective 
Tissue Diseases; 
Musculoskeletal Diseases; 
Immune System 
Diseases 

Disease or 
Syndrome 

2723 2387 0.1 cell adhesion and 
migration processes 
including embryogenesis, 
wound healing, blood 
coagulation, host 
defense, 
and metastasis 

Glomerulopathy with 
fibronectin deposits 2 
(GFND2); 
Spondylometaphyseal 
dysplasia; corner fracture 
type (SMDCF); 
Miscarriage; 
Spontaneous abortion; Early 
Pregnancy Loss; Abortion, 
Tubal 
 

NCAM1 
  

neural cell 
adhesion 
molecule 1 
 

4684 Skin and Connective 
Tissue Diseases; 
Musculoskeletal Diseases; 
Immune System 
Diseases 
 

Disease or 
Syndrome 

2723 2387 0.03 Involved in various cellular 
interactions, both between 
cells and with the 
extracellular matrix, 
throughout developmental 
processes and 
differentiation. It 
contributes significantly to 
nervous system 
development by regulating 

Miscarriage; Spontaneous 
abortion; Early Pregnancy 
Loss; Abortion, Tubal 
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Table 2. Gene-disease association (continued) 
Gene 

Symbol 
Gene Name Gene ID Disease Class Semantic 

Type 
N.genes d N.SNPs d Score Functions Other Diseases 

Associated 

        neurogenesis, promoting 
neurite outgrowth, and 
facilitating cell migration. 
Additionally, it participates 
in the expansion of T 
lymphocytes, B 
lymphocytes, and natural 
killer (NK) cells, crucial for 
immune surveillance. 
Furthermore, it plays a 
pivotal role in signal 
transduction mechanisms 
by interacting with 
fibroblast growth factor 
receptors, N-cadherin, and 
other extracellular matrix 
components. These 
interactions trigger 
signaling cascades 
involving FYN-focal 
adhesion kinase (FAK), 
mitogen-activated protein 
kinase (MAPK), and 
phosphatidylinositol 3-
kinase (PI3K) 
 

 

GATA1 GATA binding 
protein 1 
 

2623 Skin and Connective 
Tissue Diseases; 
Musculoskeletal Diseases; 
Immune System 
Diseases 

Disease or 
Syndrome 

2723 2387 0.01 coagulation, erythrocyte 
differentiation, erythrocyte 
homeostasis, hemostasis, 
homeostasis of number of 
cells, myeloid cell 
development, myeloid cell 
differentiation, myeloid cell 
homeostasis 

X-linked dyserythropoietic 
anemia and 
thrombocytopenia (XDAT); 
Thrombocytopenia with beta-
thalassemia, X-linked 
(XLTT); Anemia without 
thrombocytopenia, X-linked 
(XLAWT); Hemolytic anemia 
due to elevated adenosine 
deaminase (HAEADA); 
Diamond-Blackfan anemia 
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fibronectin fragments stimulate mediators of matrix and cartilage destruction in RA, 
providing insights into the functional role of HLA-DRB1 in RA pathogenesis. Five 
citrullinated residues in fibronectin from RA synovial fluid were identified (van Beers et al., 
2012), while researchers found associations between synovial fibronectin fragmentation 
and domain expressions in RA progression (Przybysz et al., 2007). 

The NCAM1 gene's association with RA is supported by another study 
demonstrating the accumulation of CD56 (bright) natural killer cell subsets with 
immunoregulatory properties in tissue sites of inflammation, including the synovial 
membrane in RA patients (Conigliaro et al., 2011).  Finally, the GATA1 gene's association 
with RA is backed by Liu et al. (2018), highlighting the crucial involvement of synovial 
GATA1 in the progression and aggravation of RA through its induction of NOS2 
transcription. 

The study revealed a set of 20 hub genes, with 10 up-regulated and 10 down-
regulated genes, which play diverse roles ranging from erythropoiesis and cell adhesion to 
immune regulation and apoptosis. Notably, genes such as STAT1, FASLG, FN1, NCAM1, 
and GATA1 emerged as key players directly associated with RA. These findings were 
corroborated through extensive literature review and analysis using the DisGeNET 
database. For instance, STAT1, a pivotal regulator of cytokine responses, exhibited 
elevated expression levels in RA synovium, implicating its role in driving the inflammatory 
cascade characteristic of RA. Similarly, genes like FASLG, FN1, NCAM1, and GATA1 
demonstrated associations with various aspects of RA pathogenesis, including apoptosis 
dysregulation, immune cell activation, and cartilage degradation. 

Overall, the comprehensive validation and disease association analysis have 
deepened our understanding of the molecular mechanisms underlying RA. The 
identification of these hub genes provides valuable insights into potential therapeutic 
targets and avenues for further research aimed at finding the complexities of RA and 
developing targeted interventions to mitigate its impact. 
 
3.6 Identification of miRNAs targeting the hub genes 
 
The study utilized miRNet 2.0 database to identify miRNAs and transcription factors 
targeting the hub genes. Out of the 20 submitted genes, AHSP and ZMYND10 were not 
mapped in the interaction database. The resulting network comprised 18 genes, 70 
transcription factors, and 402 miRNAs, totaling 660 edges. Applying a degree filter, less 
significant nodes were eliminated, revealing a refined network with 18 genes, 103 miRNAs, 
and 10 transcription factors connected by 301 edges.  Interestingly, the network highlighted 
GATA1 and KLF1 as hub genes functioning both as transcription factors and genes.  

Among the 70 transcription factors, GATA1, NFKB1, and RELA targeted 6 hub 
genes. Among the 402 miRNAs, hsa-mir-27a-3p was identified to target 10 hub genes. 
This suggests the potential significance of hsa-mir-27a-3p and the transcription factors 
GATA1, NFKB1, and RELA in the pathogenesis and development of rheumatoid arthritis, 
possibly regulating gene expression in RA. However, the hypothesis requires validation 
through further in-vitro and in-vivo research. 

Prior studies have indicated the up-regulation of miR-27a-3p in TGF-β1-treated 
human lung fibroblasts and in fibroblasts from mice with experimental pulmonary fibrosis, 
suggesting its involvement in Smad2/3-dependent pathways (Cui et al., 2016). Additionally, 
MIR-27a has been found to regulate the TGF-β signaling pathway by targeting SMAD2 and 
SMAD4 in lung cancer (Chae et al., 2017). These findings add context to the potential role 
of hsa-mir-27a-3p in the regulatory network associated with RA pathogenesis.  
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4. Conclusions 
 
Our study focuses on rheumatoid arthritis, a serious ailment that affects people all over the 
world.  According to the findings of this research, it can be inferred that five specific genes 
exhibit greater significance, namely STAT1, FN1, FASLG, NCAM1, and GATA1. A few of 
these genes are also associated with other diseases such as Mental disorders like bipolar 
disorder, anaemia, respiratory disorders and other autoimmune disorders. In addition, 
miRNA, has-mir-27a-3p and three transcription factors, GATA1, NFKB1, and RELA were 
predicted to play a significant role in controlling the gene expression of the hub genes. 
Therefore, this study indicates that the identified hub genes and miRNAs might provide 
new concepts for developing diagnosis and serve as a platform for developing therapeutics 
against rheumatoid arthritis. 
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