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Abstract 
 

Anonymous polls nowadays rely solely on centralization, which 
means that respondents should trust the owner's company not to share 
responses or look through all the submitted answers. However, there 
is a concept of randomized response which trades the need for trust 
with some error. In this paper, the classical forced randomized 
response protocol is extended by using an arbitrary random variable. 
We try to optimize the tradeoff between accuracy and privacy of the 
polling. The Gaussian random variable is chosen to perform 
simulations of our method. For the best model, the poll maker has to 
choose the parameters that maximize a utility function, which has to 
be defined due to the priority between privacy and accuracy. If the 
poll maker prioritizes voters’ privacy, our simulation shows that the 
best Gaussian random variable model, in this case, will be the model 
with 𝜎𝜎 = 0.9 and 𝛿𝛿 = 0.2 . On the other hand, if the poll maker 
prioritizes accuracy, the best model for our experiment will be the 
one with 𝜎𝜎 = 0.9 and 𝛿𝛿 = 1. 

 
 
1. Introduction 
 
Especially in the age of data, gathering information from people is beneficial to companies, 
organizations, and institutes. Although people may feel safe providing private information to secure, 
trusted organizations via their anonymous surveys, in reality, the survey owner has complete control 
and access to networking details, including the IP addresses. So, it is easy for the owner to decode 
back and find the corresponding responses of every individual. In other words, anonymous polls 
nowadays rely entirely on the survey organization trustworthiness and policies. 

Warner [1] developed a randomized response procedure as a survey method to address the 
issue of the need to protect participant answers to sensitive questions. According to Blair et al. [2], 
randomized response protocols can be separated into four kinds: mirrored question design, forced 
response design, disguised response design, and an unrelated question design. The mirrored question  
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design was put forward by Warner [1]. The idea was to set a question with its negation. The voter 
was then given one of the two opposing questions at random. As a result, the poll creator could not 
tell which question a voter had chosen to respond when they received the responses. For the forced 
response, there was only a single question. A voter was chosen at random to either be forced to 
provide an answer or to express their views. This method was proposed by Boruch [3]. The next 
method was the disguised response, which was devised in Kuk [4] to stop the uncomfortable voter 
from providing a specific response. Two random items having the same set of outcomes but different 
probabilities were required for this procedure, such as two different weighted coins. Each coin 
represented each answer; the voter was asked to choose the coin according to their answer, then toss 
it and report the outcome. Lastly, in the unrelated question design proposed by Greenberg et al. [5], 
voters needed to pick a question randomly: one was the real question, and the other was an unrelated 
one. Therefore, the poll creator was unable to tell which question the voter had been responding to. 

In this research, we focus on the forced response design. Lensvelt-Mulders et al. [6] 
mentioned that the forced response method was one of the most efficient designs among several 
classic methods. One of the real examples of research using this method was Blair et al. [7] who 
used a questionnaire to ask 2457 civilians in villages affected by militant violence. The voters were 
asked to roll a die; if one showed up, the answer was forced to be no. If six showed up, the answer 
was forced to be yes. However, the honest answer was collected if another number showed up. 
Basically, this design can be illustrated as two random steps. First was to choose whether the answer 
was forced or not. Second, if the answer had been forced, which one had it been forced to be. This 
design is the most wildly used in many fields of studies. There are many examples of its use in 
research, such as estimating the prevalence of xenophobia and anti-semitism in Germany [8], 
identifying the indicators of illegal behaviour [9], establishing the prevalence of the use of 
performance enhancing drugs [10], investigating cannabis use by Spanish university students [11], 
studying physical and cognitive doping in recreational triathletes [12], estimating the prevalence of 
drug use [13], modelling criminal behaviour among a prison population [14], and measuring 
individual benefits of psychiatric treatment in non-cannabis and cannabis users [15]. 
 This research aimed to improve the security of the polling method while limiting the 
increase in error. The expected result was an anonymous surveying model that guaranteed high 
privacy for the voters, and therefore reduced certain biases from the data that the collectors received. 
This paper would present an extension of the classic version of the forced randomized response 
protocol by allowing the random item to any arbitrary random variable. 
 
 
2. Materials and Methods 
 
2.1 Mathematical background 
 
The likelihood function is the function that measures how well a static model fits sample data. The 
likelihood function describes a hypersurface, where its maximum represents the combination of 
model parameter values that maximizes the probability of drawing the sample obtained. The 
procedure for obtaining these arguments of the maximum likelihood function is known as maximum 
likelihood estimation. 
 Let 𝑋𝑋1, 𝑋𝑋2, … , 𝑋𝑋𝑛𝑛 be observations from 𝑛𝑛 independent and identically distributed random 
variables drawn from a probability distribution 𝑓𝑓 that depend on some parameter 𝜃𝜃 on parameter 
space Θ , then the likelihood function is: 
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 The maximum likelihood estimate is a method of estimating the probability distribution 
parameters by maximizing the likelihood function so that under the assumed statistical model, the 
observed data is most probable. The point in the parameter space that maximizes the likelihood 
function is called the maximum likelihood estimator (MLE). The goal of maximum likelihood 
estimation is to find the values of the model parameters that maximize the likelihood function over 
the parameter space Θ, that is: 
 

 
 

The specific value 𝜃𝜃� ∈ Θ is called the maximum likelihood estimate. If it is measurable, 
then it is called the maximum likelihood estimator.  
 Lastly, Bayes’ Theorem describes how to update the probabilities of hypotheses when 
given evidence. It follows simply from the axioms of conditional probability. However, it can be 
used to reason a wide range of problems involving belief updates powerfully. Given an experiment, 
the universe 𝑈𝑈 includes 𝑛𝑛 unsimultaneous events 𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑛𝑛 , and 𝐸𝐸 be an event in the sample 
space given by 𝐴𝐴𝑖𝑖 for 𝑖𝑖 = 1, … , 𝑛𝑛. The conditional probability of 𝐴𝐴𝑖𝑖 given by 𝐸𝐸, which had already 
occurred, can be determined by the following equation [16]: 
 

 
 
 
2.2 Forced randomized response protocol 
 
The classical forced randomized response protocol can be simply visualized, as shown in Figure 1. 
Firstly, the voter casts their vote, either 1 or 0, denoted as 𝑣𝑣. Then, they pass their intended answer 
into the predefined algorithm, which gives back a randomized value, 𝑣𝑣′, based on the intended 
answer 𝑣𝑣. Note that 𝑣𝑣′ ∈  {0, 1}, the diagram in Figure 1 shows that when 𝑣𝑣 = 1, 𝑃𝑃(𝑣𝑣′ =  1)  =
 𝑓𝑓 +  (1 − 𝑓𝑓)𝑞𝑞, and similarly, when 𝑣𝑣 =  0, we get 𝑃𝑃(𝑣𝑣′ =  1)  =  (1 − 𝑓𝑓)𝑞𝑞.  
 

From the above observation, it can be said that 𝑣𝑣′ has a Bernoulli distribution with success 
probability 𝑓𝑓 + (1 − 𝑓𝑓)𝑞𝑞. A similar argument applies in the other case. Therefore, the classical 
forced randomized response method can also be viewed as a random variable, as shown in the 
following equation: 
 

 
 
where 𝐵𝐵(𝑝𝑝) is the Bernoulli random variable with success probability 𝑝𝑝. Note that the expectation 
𝐸𝐸[𝐵𝐵(𝑓𝑓 +  (1 − 𝑓𝑓)𝑞𝑞)]  =  𝐸𝐸[𝐵𝐵((1 − 𝑓𝑓)𝑞𝑞)] applied only if 𝑓𝑓 =  0, and the model with 𝑓𝑓 = 0 is not 
valid. 
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Figure 1. Classical forced randomized response protocol 
 
 From the previous observation, the forced randomized response protocol can be extended 
to any arbitrary random variable as in the following equation: 
 

 
 

where 𝑋𝑋 and 𝑌𝑌 are arbitrary same type random variables (both continuous or both discrete) such that 
𝐸𝐸[𝑋𝑋]  ≠  𝐸𝐸[𝑌𝑌]. 
 
 An approximation of the numbers of voters who intentionally choose 𝑣𝑣 = 1 can be derived 
from the point estimator. First, denote 𝑝𝑝 as the probability that each independent voter will vote for 
𝑣𝑣 = 1, this is the preferential bias of a certain population, and 𝑛𝑛 as the expected number of voters 
who intentionally choose 𝑣𝑣 = 1, which means that 𝑛𝑛 =  𝑝𝑝𝑝𝑝. The point estimator of the numbers of 
voters who intentionally vote 𝑣𝑣 = 1 is 𝑛𝑛� = 𝑝̂𝑝𝑁𝑁. From the assumption regarding population bias, 𝑝𝑝, 
the distribution of 𝑣𝑣′ is shown in the equation: 
 

 
 
 The point estimator of 𝑝𝑝, is then derived as: 
 

 
 

which is unbiased, since 
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2.3 Performance 
 
The performance of each model can be measured in two aspects, which are privacy and accuracy. 
Privacy is the measure of the difficulty of a bystander to guess the intended answer knowing only 
the randomized value. On the other hand, accuracy is the measure of the real-world error in using 
the process, which is simulated by a computer. 
 For every value of 𝑣𝑣′, it is possible to know the probability that 𝑣𝑣 =  1 and 𝑣𝑣 =  0. The 
idea is that distinguishing 𝑣𝑣 =  1 and 𝑣𝑣 =  0 can be done with high confidence when the difference 
of probability of 𝑣𝑣 =  1 and 𝑣𝑣 =  0 is high. If that is the case, then the voter's intention is not 
private. Therefore, let 𝐺𝐺(𝑧𝑧)  =  |𝑓𝑓𝑋𝑋(𝑧𝑧)  − 𝑓𝑓𝑌𝑌(𝑧𝑧)|, where 𝑓𝑓𝑋𝑋 is the probability density function of 𝑋𝑋 
and 𝑓𝑓𝑌𝑌 is the probability density function of 𝑌𝑌, then 𝐺𝐺(𝑧𝑧) represents the confidence of determining 
𝑣𝑣 given that 𝑣𝑣′ =  𝑧𝑧. 
 The insecurity function is then defined as the product of the area under the curve of 
𝐺𝐺(𝑥𝑥)  and the probability of having 𝑣𝑣′ =  𝑥𝑥 over all possible 𝑥𝑥s. We formally define the insecurity 
𝐼𝐼 by the following equation: 
 

 
 

Note that integration should be changed to summation over all 𝑥𝑥  when using discrete random 
variables. 
 Accuracy is measured using a computer simulation. A simulation takes two random 
variables, applies the extended forced randomized response protocol, gathers data, and decodes the 
result using the point estimator. The accuracy is reversely defined using the error, which is the 
difference between real value and the value yielded by the model in each trial. 
 
 
3. Results and Discussion 
 
The Gaussian random variable is chosen as an example of using the extended forced randomized 
response technique. The process is started by defining the random function which, in this case, will 
be as: 

 
 
for some value of 𝜎𝜎 and 𝛿𝛿 ≠ 0. Here, 𝑁𝑁(𝜇𝜇, 𝜎𝜎) denotes a Gaussian random variable with mean 𝜇𝜇 and 
standard deviation 𝜎𝜎. 
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After defining the random variable, we will elaborate on the protocol. First, the poll maker 
distributes the pre-determined value of 𝛿𝛿 and 𝜎𝜎 to every voter. Then, each voter can choose their 
intended answer, keep it a secret, and use the 𝛿𝛿 and 𝜎𝜎 to blind their response. After they come up 
with the blinded result, they can submit it to the system. The privacy level of them doing so will be 
discussed later. Next, the system gathers the responses from all the voters and then proceeds with 
the calculation. In the calculation, the machine sums up all the responses and uses the unbiased point 
estimator to map back the value. 
 The unbiased point estimator of this model can be derived as: 
 

 
 
 The definition of insecurity in the equation can be adapted to match with the case of 
Gaussian variables. The derivation of the privacy formula is included in the following equation: 
 

 
 
where 

. 
 
 The Gaussian random variable model is simulated using the method for various quadruples 
of (𝑁𝑁, 𝑝𝑝, 𝛿𝛿, 𝜎𝜎) . The classical model simulates the same way for various quadruples of (𝑁𝑁, 𝑝𝑝, 𝑓𝑓, 𝑞𝑞) 
as a comparison set. In each simulation, the model is tested for error 100 times. The root mean 
square of the errors, defined in Jeffreys [16], was used in all testing. The results from the simulation 
are shown in Tables 1-4. 

Table 1 shows the insecurity of both the Gaussian random variable model and the classical 
model. From the Table, it is observed that for the cases where the population is extremely biased 
toward one end of preference, when the population bias 𝑝𝑝 is 0.1 or 0.9, the insecurity of all models 
is higher than in other cases. This means that it is harder to protect voters’ intentions from being 
discovered in those kinds of situations. However, for a common population with a population bias 
𝑝𝑝 around 0.5, it is possible to choose a model that yields arbitrary insecurity using both the classical 
and Gaussian random variable models. 

From Table 2, it is observed that a high value of 𝑓𝑓 decreases the root mean square error of 
the model significantly. The classical model with higher value of 𝑓𝑓  has a lower probability of 
convincing the voters’ answers with a random one.  With lower mutation rate, the decoding process 
can be done more efficiently. These phenomena occur regardless of 𝑝𝑝, 𝑁𝑁, and 𝑞𝑞. 

Similarly, Table 3 shows the relation between 𝛿𝛿 and the accuracy of the model. Higher 
values of 𝛿𝛿 make the model more accurate for every value of 𝑝𝑝, 𝑁𝑁, and 𝜎𝜎. The value of 𝛿𝛿 directly 
causes differences in expectation of two models, which is the noise layer in this model. Therefore, 
the larger 𝛿𝛿 is, the harder it is to reverse the process and determine voters’ intention. 
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Table 1. Insecurity of models 

  
Table 2. Root mean square error of the classical model 
𝒒𝒒 𝒑𝒑 𝑵𝑵 = 500 𝑵𝑵 = 3000 

𝒇𝒇=0.1 𝒇𝒇=0.3 𝒇𝒇=0.5 𝒇𝒇=0.7 𝒇𝒇=0.9 𝒇𝒇=0.1 𝒇𝒇=0.3 𝒇𝒇=0.5 𝒇𝒇=0.7 𝒇𝒇=0.9 

0.1 

0.1 
0.3 
0.5 
0.7 
0.9 

67.985 
76.961 
80.685 
75.153 
76.177 

24.452 
25.349 
25.421 
33.338 
35.977 

11.761 
15.467 
18.859 
18.514 
21.868 

6.737 
9.501 

10.293 
12.766 
13.064 

3.113 
4.309 
5.020 
5.834 
6.952 

170.247 
162.130 
182.592 
208.370 
228.473 

51.158 
56.552 
62.097 
67.94 
78.713 

27.899 
32.682 
40.64 
48.982 
53.636 

15.485 
18.927 
26.206 
28.475 
30.599 

6.921 
11.085 
13.965 
13.553 
20.776 

0.3 

0.1 
0.3 
0.5 
0.7 
0.9 

98.204 
108.908 
102.479 
101.124 
102.538 

31.505 
34.413 
37.265 
35.539 
32.452 

16.840 
16.420 
19.144 
21.324 
20.152 

10.179 
10.852 
11.056 
12.506 
12.967 

4.539 
4.754 
5.045 
5.852 
5.558 

260.002 
267.013 
246.585 
283.251 
260.709 

80.421 
89.145 
79.975 
89.086 
82.655 

39.387 
43.434 
47.097 
50.148 
52.202 

21.831 
23.967 
29.248 
28.666 
29.258 

11.123 
12.916 
11.757 
14.849 
17.442 

0.5 

0.1 
0.3 
0.5 
0.7 
0.9 

133.195 
110.603 
100.215 
116.452 
108.798 

35.727 
31.633 
32.395 
34.898 
31.565 

19.532 
20.398 
20.539 
19.127 
19.549 

12.015 
11.898 
10.535 
11.577 
11.303 

4.418 
4.810 
5.952 
5.782 
5.160 

296.231 
238.967 
274.124 
294.403 
302.772 

84.275 
88.072 
90.005 
79.056 
88.756 

46.330 
47.530 
48.067 
47.777 
46.943 

27.542 
28.301 
25.432 
29.349 
25.523 

12.941 
13.653 
13.973 
13.657 
14.339 

0.7 

0.1 
0.3 
0.5 
0.7 
0.9 

113.142 
104.862 
113.618 
89.247 
93.301 

36.411 
36.712 
34.686 
34.158 
32.590 

19.921 
19.093 
18.487 
15.505 
17.374 

12.469 
11.014 
11.099 
9.919 

11.111 

6.153 
5.206 
6.587 
4.978 
4.469 

251.803 
272.149 
237.051 
246.66 

244.121 

87.314 
79.441 
90.624 
72.670 
81.700 

52.831 
45.474 
45.093 
45.837 
43.517 

30.468 
27.376 
28.433 
27.444 
20.524 

13.206 
13.774 
12.785 
12.135 
11.224 

0.9 

0.1 
0.3 
0.5 
0.7 
0.9 

82.219 
86.475 
86.470 
70.788 
67.424 

33.568 
36.278 
28.445 
23.345 
20.854 

22.320 
21.516 
17.249 
15.590 
11.370 

11.602 
12.192 
11.433 
9.203 
6.690 

5.582 
6.050 
5.556 
4.238 
2.773 

193.505 
185.610 
179.483 
146.161 
148.432 

90.346 
78.723 
80.955 
59.124 
48.470 

53.962 
48.704 
41.721 
37.441 
28.978 

35.248 
31.296 
25.081 
23.412 
16.424 

17.828 
15.259 
14.191 
9.835 
8.687 

 

𝒑𝒑 
Classical Model Gaussian Variable Model 

q 𝒇𝒇=0.1 𝒇𝒇=0.3 𝒇𝒇=0.5 𝒇𝒇=0.7 𝒇𝒇=0.9 𝝈𝝈 𝜹𝜹=0.2 𝜹𝜹=0.4 𝜹𝜹=0.6 𝜹𝜹=0.8 𝜹𝜹=1.0 

0.1 
 

0.1 
0.3 
0.5 
0.7 
0.9 

0.800 
0.800 
0.800 
0.800 
0.800 

0.800 
0.800 
0.800 
0.800 
0.800 

0.800 
0.800 
0.800 
0.800 
0.820 

0.800 
0.800 
0.800 
0.800 
0.892 

0.836 
0.868 
0.900 
0.932 
0.964 

0.1 
0.3 
0.5 
0.7 
0.9 

0.860 
0.800 
0.800 
0.800 
0.800 

0.976 
0.814 
0.800 
0.800 
0.800 

0.998 
0.860 
0.808 
0.801 
0.800 

1.000 
0.911 
0.830 
0.806 
0.801 

1.000 
0.951 
0.860 
0.819 
0.805 

0.3 
 

0.1 
0.3 
0.5 
0.7 
0.9 

0.400 
0.400 
0.400 
0.400 
0.400 

0.400 
0.400 
0.400 
0.412 
0.524 

0.400 
0.420 
0.500 
0.580 
0.600 

0.604 
0.652 
0.700 
0.748 
0.796 

0.868 
0.884 
0.900 
0.916 
0.932 

0.1 
0.3 
0.5 
0.7 
0.9 

0.723 
0.428 
0.402 
0.400 
0.400 

0.959 
0.572 
0.452 
0.415 
0.404 

0.998 
0.723 
0.541 
0.463 
0.428 

1.000 
0.838 
0.635 
0.527 
0.470 

1.000 
0.914 
0.723 
0.595 
0.520 

0.5 
 

0.1 
0.3 
0.5 
0.7 
0.9 

0.100 
0.100 
0.100 
0.100 
0.100 

0.300 
0.300 
0.300 
0.300 
0.300 

0.500 
0.500 
0.500 
0.500 
0.500 

0.700 
0.700 
0.700 
0.700 
0.700 

0.900 
0.900 
0.900 
0.900 
0.900 

0.1 
0.3 
0.5 
0.7 
0.9 

0.683 
0.261 
0.159 
0.114 
0.088 

0.954 
0.495 
0.311 
0.225 
0.176 

0.997 
0.683 
0.451 
0.332 
0.261 

1.000 
0.818 
0.576 
0.432 
0.343 

1.000 
0.904 
0.683 
0.525 
0.421 

0.7 
 

0.1 
0.3 
0.5 
0.7 
0.9 

0.400 
0.400 
0.400 
0.400 
0.400 

0.524 
0.412 
0.400 
0.400 
0.400 

0.660 
0.580 
0.500 
0.420 
0.400 

0.796 
0.748 
0.700 
0.652 
0.604 

0.932 
0.916 
0.900 
0.884 
0.868 

0.1 
0.3 
0.5 
0.7 
0.9 

0.723 
0.428 
0.402 
0.400 
0.400 

0.959 
0.572 
0.452 
0.415 
0.404 

0.998 
0.723 
0.541 
0.463 
0.428 

1.000 
0.838 
0.635 
0.527 
0.470 

1.000 
0.914 
0.723 
0.595 
0.520 

0.9 
 

0.1 
0.3 
0.5 
0.7 
0.9 

0.800 
0.800 
0.800 
0.800 
0.800 

0.800 
0.800 
0.800 
0.800 
0.800 

0.820 
0.800 
0.800 
0.800 
0.800 

0.892 
0.800 
0.800 
0.800 
0.800 

0.964 
0.932 
0.900 
0.868 
0.836 

0.1 
0.3 
0.5 
0.7 
0.9 

0.860 
0.800 
0.800 
0.800 
0.800 

0.976 
0.814 
0.800 
0.800 
0.800 

0.998 
0.860 
0.808 
0.801 
0.800 

1.000 
0.911 
0.830 
0.806 
0.801 

1.000 
0.951 
0.860 
0.819 
0.805 
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Table 3. Root mean square error of Gaussian random variable model 

𝝈𝝈 𝒑𝒑 𝑵𝑵 = 500 𝑵𝑵 = 3000 
𝜹𝜹=0.2 𝜹𝜹=0.4 𝜹𝜹=0.6 𝜹𝜹=0.8 𝜹𝜹=1.0 𝜹𝜹=0.2 𝜹𝜹=0.4 𝜹𝜹=0.6 𝜹𝜹=0.8 𝜹𝜹=1.0 

0.1 

0.1 
0.3 
0.5 
0.7 
0.9 

67.985 
76.961 
80.685 
75.153 
76.177 

31.710 
35.366 
43.506 
49.835 
50.540 

24.452 
25.349 
25.421 
33.338 
35.977 

16.985 
18.424 
20.561 
24.031 
25.291 

11.761 
15.467 
18.859 
18.514 
21.868 

170.247 
162.130 
182.592 
208.370 
228.473 

75.593 
92.189 
98.555 

118.919 
116.636 

51.158 
56.552 
62.097 
67.940 
78.713 

42.435 
46.715 
49.731 
61.294 
60.930 

27.899 
32.682 
40.640 
48.982 
53.636 

0.3 

0.1 
0.3 
0.5 
0.7 
0.9 

98.204 
108.908 
102.479 
101.124 
102.538 

46.979 
57.617 
48.492 
51.186 
54.376 

31.505 
34.413 
37.265 
35.539 
32.452 

20.792 
22.501 
28.109 
28.084 
25.752 

16.840 
16.420 
19.144 
21.324 
20.152 

260.002 
267.013 
246.585 
283.251 
260.709 

113.402 
113.487 
123.712 
125.614 
122.108 

80.421 
89.145 
79.975 
89.086 
82.655 

51.673 
62.048 
57.109 
65.588 
63.380 

39.387 
43.434 
47.097 
50.148 
52.202 

0.5 

0.1 
0.3 
0.5 
0.7 
0.9 

133.195 
110.603 
100.215 
116.452 
108.798 

56.493 
60.673 
51.819 
46.634 
56.840 

35.727 
31.633 
32.395 
34.898 
31.565 

26.239 
23.971 
27.590 
23.808 
24.033 

19.532 
20.398 
20.539 
19.127 
19.549 

296.231 
238.967 
274.124 
294.403 
302.772 

124.602 
132.058 
137.142 
131.896 
143.224 

84.275 
88.072 
90.005 
79.056 
88.756 

68.299 
54.546 
59.800 
58.106 
69.214 

46.330 
47.530 
48.067 
47.777 
46.943 

0.7 

0.1 
0.3 
0.5 
0.7 
0.9 

113.142 
104.862 
113.618 
89.247 
93.301 

49.221 
60.073 
54.282 
45.318 
51.105 

36.411 
36.712 
34.686 
34.158 
32.590 

25.558 
25.690 
25.522 
24.091 
22.109 

19.921 
19.093 
18.487 
15.505 
17.374 

251.803 
272.149 
237.051 
246.660 
244.121 

139.285 
113.063 
126.803 
117.806 
118.591 

87.314 
79.441 
90.624 
72.670 
81.700 

65.766 
68.456 
58.097 
55.959 
53.886 

52.831 
45.474 
45.093 
45.837 
43.517 

0.9 

0.1 
0.3 
0.5 
0.7 
0.9 

82.219 
86.475 
86.470 
70.788 
67.424 

44.905 
43.972 
39.265 
38.425 
30.859 

33.568 
36.278 
28.445 
23.345 
20.854 

27.879 
24.867 
18.611 
18.891 
15.554 

22.320 
21.516 
17.249 
15.590 
11.370 

193.505 
185.610 
179.483 
146.161 
148.432 

116.713 
110.580 
107.509 
85.016 
76.327 

90.346 
78.723 
80.955 
59.124 
48.470 

64.796 
53.422 
47.550 
45.018 
36.099 

53.962 
48.704 
41.721 
37.441 
28.978 

 
Table 4. Average of root mean square error of all the models in percentage of 𝑁𝑁 

Model p N 
100 500 1000 1500 2000 2500 3000 3500 

Classical 0.1 
0.3 
0.5 
0.7 
0.9 

12.860 
12.829 
13.150 
12.806 
12.914 

5.762 
5.904 
5.804 
5.858 
5.777 

4.064 
4.105 
4.061 
4.056 
4.064 

3.310 
3.311 
3.431 
3.324 
3.306 

2.872 
2.845 
2.857 
2.878 
2.840 

2.560 
2.540 
2.564 
2.570 
2.538 

2.354 
2.337 
2.322 
2.376 
2.354 

2.138 
2.196 
2.219 
2.210 
2.168 

Gaussian 0.1 
0.3 
0.5 
0.7 
0.9 

10.905 
11.372 
11.201 
11.420 
11.376 

4.957 
5.016 
5.085 
5.047 
5.214 

3.592 
3.747 
3.599 
3.606 
3.549 

2.992 
2.905 
2.913 
2.981 
2.873 

2.561 
2.517 
2.498 
2.578 
2.546 

2.309 
2.250 
2.285 
2.306 
2.304 

2.042 
2.093 
2.076 
2.139 
2.034 

1.908 
1.942 
1.910 
1.941 
1.931 

 
 In Table 4, each model that is evaluated is a combination of 𝑓𝑓 = 0.1,0.2, . . . , 0.9 , 𝑞𝑞 =
0.1,0.2, . . . , 1.0  for classical model, and 𝛿𝛿 = 0.2,0.4, . . . , 1, 𝜎𝜎 = 0.1,0.2, . . . , 0.9  for the Gaussian 
random variable model. Note that since the average is taken from just some instances of the model, 
the value of the Gaussian model and classical model cannot be directly compared. It is not rational 
to say that one model is better than the other if it has a lower value. This Table illustrates the relation 
of the accuracy of models with respect to the size of the population and population bias. It shows 
that this simulation agrees with the law of large numbers in that when the number of samples goes 
up, the accuracy of the model also increases.  
 Some instances of the model perform better with certain populational biases. The better 
models and the worse models cancel out and the average performance does not vary with the 
population. These numbers suggest that for making a survey in an unknown populational bias, using 
a random model from the mentioned list will yield the expected error shown in Table 4. 
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 Defining a global requirement for the survey or prioritizing voters’ privacy and accuracy 
is not rational, as it cannot be useful in general cases. Surveys have different requirements, so there 
will not be a model that fits with all scenarios. For instance, surveying politics in a dictatorship 
country may require prioritizing voters’ privacy over accuracy (and compensate the accuracy 
measure by going through more samples), whereas a poll regarding service satisfaction of a small 
population might need higher accuracy by compensating voters’ privacy. The poll makers should 
apply this model to fit specific situations.  

 To select the best model, the poll maker has to, consciously or unconsciously, define a 
utility function that takes into account insecurity measure and expected error, and also other 
environmental parameters if accessible. After that, the poll maker needs to find the model that gives 
the maximum utility cost from all of the available models. To illustrate this method, let 𝐼𝐼 denote the 
insecurity measure of a model and 𝐸𝐸 denotes expected error in a certain situation (population of 𝑁𝑁 
with bias 𝑝𝑝). If the poll maker prioritizes voters’ privacy and defines the utility function to be 
𝑈𝑈1(𝐼𝐼, 𝐸𝐸) = −10000𝐼𝐼 − 𝐸𝐸, in a population of 1000 people that has a population bias 𝑝𝑝 = 0.5 , the 
best Gaussian random variable model in this case will be the model with 𝜎𝜎 = 0.9 and 𝛿𝛿 = 0.2 which 
yields the highest utility, -1025.740. Note that this value is not the global maximum, but it is the 
best instance from those that are used in this experiment. On the other hand, if the poll maker 
prioritizes accuracy, they might define 𝑈𝑈2(𝐼𝐼, 𝐸𝐸)  =  −1000𝐼𝐼 − 10𝐸𝐸. The insecurity measure is, on 
average, smaller than the error term by approximately a factor of 𝑁𝑁 . The best model of our 
experiment is the one with 𝜎𝜎 = 0.9 and 𝛿𝛿 = 1, which yields -663.027 utility points. Moreover, the 
poll maker can also use more advanced utility functions such as 𝑈𝑈(𝐼𝐼, 𝐸𝐸) =  ∑ −1000𝐼𝐼 − 𝐸𝐸𝑝𝑝  for all 
𝑝𝑝 in {0.1,0.2, … ,0.9} and a population of 1000 people. Using this function, the model with 𝜎𝜎 = 0.9 
and 𝛿𝛿 = 0.4 gives the maximum utility points of about -4911.043. 
 
 
4. Conclusions 
 
The extended forced randomized response protocol can benefit every party involved in the polling 
process by providing a security preserving sampling technique that does not trade off too much 
accuracy. This model of extended forced randomized response protocol makes it possible to apply 
any random variable to be used in the sampling. However, some randomized variables, such as 
Bernoulli or binomial, can be easily conducted on the client-side, by using coin flips, while some 
might require other instances. 
 From the extended model we develop, it is possible to use an arbitrary random variable in 
the forced randomized response protocol. Some random variables might be better than others in 
terms of accuracy, privacy, or practical ease of use, but this lies beyond the scope of this study. The 
extended forced randomized response protocol acts as an interface so that the effectiveness of the 
model depends on the choice of random variables.  
 This study has shown that using a Gaussian random variable in the extended forced 
randomized response protocol is enough to replace the classical forced randomized response 
protocol. However, since it is not rational to prioritize insecurity and accuracy in general cases, we 
have also concluded that it is not feasible to find an absolute measure that combines insecurity and 
accuracy. However, the poll maker can define a survey utility function to help determine the best 
model to use in certain scenarios. In the future, we plan to further extend this concept and apply it 
to the randomized response protocol for other type of questions such as multiple choice with 
multiple answers, Likert scale, rating scale and rank order poll questions. 
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