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Abstract 

 
The cultivation of high-yielding and stable rice varieties is essential for ensuring food 
security in Bangladesh. To achieve this, breeders often conduct multilocational trials to 
evaluate genotype performance across diverse environments. During the Aman rice 
season, six rice genotypes and three check varieties across nine locations were 
investigated in this study using a randomized complete block design. The primary aim was 
to identify superior genotypes using the Multi-Trait Stability Index (MTSI). Both mixed and 
fixed effect models were utilized in this study to achieve accurate and reliable results. The 
mean performance and stability (MPS) were effectively represented by the WAASBY 
(Weighted Average of Absolute Scores + Yield) biplot, which served as the superiority 
index in the analysis. The Likelihood Ratio Test (LRT) showed that genotype by 
environment interaction (GEI) and genotype had a substantial impact. Key findings showed 
that genotype-by-environment interaction (GEI) significantly influenced grain yield and 
related traits. While most traits positively correlated with yield, Thousand Grain Weight 
(TGW) did not. The WAASBY biplot effectively assessed performance and stability. Some 
genotypes, such as BRRI dhan33, BRRI dhan39, were stable but low yielding. Conversely, 
BRRI dhan49 and BR9786-BC2-119-1-1 were highly productive but less stable. Notably, 
BR9786-BC2-132-1-3 delivered the highest yield but exhibited moderate stability, making 
it promising yet sensitive to environmental changes. This study highlights BR9786-BC2-
132-1-3 as a potential candidate for further evaluation due to its productivity, with ongoing 
research needed to improve its adaptability and resilience across diverse conditions. 
 
Keywords:  multi-environmental trials; multi-trait stability index; Metan; WAASB; rice; 
stability 
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1. Introduction 
 
Rice is a staple food for much of the global population, with approximately 90% of 
production occurring in Asia. In Bangladesh, rice is the primary crop and dietary staple, 
making the country the third-largest global rice producer, cultivating 11.69 million hectares 
with an average yield of 4.89 tons per hectare in 2022 (Food and Agriculture Organization, 
2022). To meet the growing demand, rice yields must rise from 5.90 to 7.17 tons per 
hectare by 2030 (Kabir et al., 2021; Rabbi et al., 2021), necessitating high-yielding, 
seasonally adaptable varieties. Rice yield is a complex trait, determined by factors like 
spikelets per panicle, panicle counts per unit area, and grain weight (Sakamoto & Matsuoka 
2008), is influenced by genotype-environment interactions (GEI), which can cause 
variability in yield and quality (Kang, 1998). Modern breeding focuses on developing stable, 
high-yielding varieties resilient to climate variability while maintaining commercial value like 
‘yield’ (Peng et al., 1999; Hall & Richards, 2013; Hickey et al., 2019, Li et al., 2019). 

Consequently, examining diverse genotypes across various environments is 
crucial for identifying stable and adaptable rice varieties (Sharifi et al., 2020). A clear 
understanding of GEI and crop stability aids in selecting superior varieties and screening 
breeding lines during variety development (Yan & Kang, 2003). Multi-environment trials 
(MET) play a vital role in rice breeding by evaluating genotype performance, stability, and 
adaptation under varying environmental conditions, ensuring efficient selection and 
resilience to environmental stress (Malosetti et al., 2013). 

Various statistical methods, including analysis of variance (ANOVA) (Eberhart & 
Russel, 1966), best linear unbiased prediction (BLUP), additive main effects and 
multiplicative interaction (AMMI) (Gauch, 1992), joint regression analysis, and genotype 
plus the genotype-environment interaction (GGE) biplots (Yan & Kang, 2003), are 
commonly used to assess genotype stability and adaptability. Among these, AMMI and 
BLUP are effective but lack integration with linear mixed-effect models (LMM). To address 
the challenges of random GEI, novel approaches like the Weighted Average of Absolute 
Scores (WAASB) and WAASBY (WAASB + yield), introduced by Olivoto et al. (2019a), 
provide a balanced evaluation of stability and performance. These metrics combine AMMI 
and BLUP features, leveraging complete interaction principal components for better 
analysis of GEI in multi-environment trials (METs), as demonstrated in studies on stable 
and productive genotypes. Santos & Marza (2020) employed these metrics to choose 
genotypes of fodder oats that were more stable and productive. 

Genotype selection based on multiple traits is challenging due to environmental 
impacts on phenotypic traits. The concept of a plant “ideotype,” combining desirable traits, 
simplifies this process and enhances understanding of GEI in METs. Olivoto et al. (2019b) 
introduced another model named Multi-Trait Stability Index (MTSI), integrating fixed and 
mixed models to prioritize mean performance across environments (MPE) for multi-trait 
selection. The MET analysis (METAN) method, facilitating the all-inclusive selection of 
multiple traits into a unified index, offers a distinctive approach to selection (Olivoto & Lúcio, 
2020). This approach, applied successfully in crops like soybean (Zuffo et al., 2020), 
Brassica (Bocianowski et al., 2019) and sweet potato (Alam et al., 2024). This study aimed 
to identify the most stable and high-yielding rice genotypes under diverse environmental 
conditions using advanced tools like MTSI and WAASBY, ensuring a balanced evaluation 
of performance and stability. 
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2. Materials and Methods 
 
2.1 Description experimental sites 
 
The study was conducted during the T. aman (transplanted aman) growing season of 2016 
across nine locations in Bangladesh: Barishal, Cumilla, Gazipur, Habigonj, Kustia, 
Rajshahi, Rangpur, Satkhira, and Sonagazi. These sites were selected for their suitability 
as prime rice-growing zones with favorable agro-ecological conditions. The study area 
spans elevations from 10 m (Coastal South) to 105 m (North) above sea level and is located 
between 23.6850° N latitude and 90.3563° E longitude. The soil characteristics are 
summarized in Table 1, while weather data for the study zones are illustrated in Figure 1. 
Weather and soil data were obtained from the Bangladesh Rice Research Institute (BRRI, 
2023) and Bangladesh Meteorological Department (BMD, 2023). 
 
Table 1. Description of soil characteristics of nine locations 

Location ID Locations Soil Characteristics 
E1 Barishal Silty Clay-Loam 
E2 Cumilla Sandy Clay Loam to Loam, (pH 5.8,) 
E3 Gazipur Clay Loam 
E4 Habigonj Clay Soil (pH 4.5-5.5) 
E5 Kustia Light Textured Sandy-Loam to Loam  
E6 Rajshahi Calcareous Loamy Soil (pH8.0-8.5) 
E7 Rangpur Sandy Loam, Slight Acidic (pH6.4),  
E8 Satkhira Silty-Loam, (pH 8.0) 
E9 Sonagazi Sandy-Clay Loam (pH 7) 

 

 
 

Figure 1. Rainfall, high temperature and low temperature throughout the whole crop 
growing season at nine different locations 
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2.2 Experimental design, materials, and cultural practices 
 
Six potential rice genotypes (Table 2) along with three check varieties—BRRI dhan33, 
BRRI dhan39, and BRRI dhan49—were evaluated using a randomized complete block 
design with three replications. Two seedlings per hill were transplanted with a spacing of 
20 cm × 20 cm in a 20 m2 (5 m × 4 m) plot. Transplanting was conducted from the last 
week of July to mid-August (Table 3). The recommended fertilizer doses included triple 
super phosphate (44 kg/ha), muriate of potassium (52 kg/ha), and urea (96 kg/ha). 
Phosphorus and potassium, along with 50% of the total urea, were applied during 
transplanting. The remaining urea was split and top-dressed at 25 and 55 days after 
transplanting. Weed control was carried out manually three times, and disease and pest 
management were implemented as required, following guidelines from the Bangladesh 
Rice Knowledge Bank (2023). 

 
Table 2. Description of rice genotypes used in this study with their pedigrees  

Genotype 
designation 

Pedigree Parent 

BR(Bio)9786 BC2-124-1-2 ♀BRRI dhan29×♂IRGC 103404 (O. rufipogon) 
BR(Bio)9786 BC2-119-1-1 
BR(Bio)9786 BC2-132-1-3 
BR(Bio)9786 BC2-2-1-1 
BR(Bio)9786 BC2-139-2-3 
BR(Bio)9786 BC2-124-1-5 

BR=Short form of BRRI, Bio=Biotechnology division, BC= backcross 
 
Table 3. Detailed times of sowing and transplanting at nine locations 

 
2.3 Data collection 
 
The crop was harvested when it reached maximum maturity. Yield was calculated from 
10m2 (252 plants), leaving the guard rows on both sides of the plot. Rice grain yield 
adjustments were made to accommodate a 14% moisture content on a sundry basis and 
yield was converted into ton/hectare. The growth duration (GD) was recorded at the time 
of 80% crop maturity. Plant height (PH), filled spikelets/panicle (SPN) and panicle number 
(PN) were counted at the time of harvesting. The 1000 grain weight (TGW) was measured 
following sun drying and when the moisture content reached 14%. 

Location Date of Seeding Date of Transplanting 
Cumilla 08/07/15 08/08/15 

Habigonj 13/07/15 13/08/15 
Kustia 02/07/15 30/07/15 

Rangpur 01/07/15 28/07/15 
Sonagazi 14/07/15 14/08/15 
Satkhira 08/07/15 08/08/15 
Rajshahi 05/07/15 04/08/15 
Barishal 17/07/15 15/08/15 
Gazipur 01/07/15 27/07/15 
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2.4 Statistical analysis 
 
The following statistical analyses were carried out with the help of R software using "metan" 
package (Olivoto & Lúcio, 2020). 
 
2.4.1 Estimating the WAASB and WAASBY indices 
 
The Weighted Average of Absolute Scores (WAASB) index, based on the Singular Value 
Decomposition (SVD) of BLUP interaction effects for the ith genotype or environment, was 
calculated using the formula (Olivoto et al., 2019a): 
 

  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖 =
∑ |𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 × 𝐸𝐸𝐸𝐸𝑘𝑘|𝑝𝑝
𝑘𝑘=1

∑ 𝐸𝐸𝐸𝐸𝑘𝑘
𝑝𝑝
𝑘𝑘=1

 

 
Where, EPk is the portion of variation explained by the kth IPCA, and interaction principal 
component axis (IPCAik) is the score of the ith genotype (or environment) in the kth IPCA. 
The WAASBY index combines grain yield (Y) and stability (WAASB) into a single metric to 
identify superior genotypes (Olivoto et al., 2019a). It was calculated using the following 
equation: 

  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖 =
(𝑟𝑟𝑟𝑟𝑖𝑖 × 𝜃𝜃𝑌𝑌) + (𝑟𝑟𝑟𝑟𝑖𝑖 × 𝜃𝜃𝑆𝑆)

𝜃𝜃𝑌𝑌 + 𝜃𝜃𝑆𝑆
 

 
The weights between performance and stability are represented by WAASBYi, which 
stands for the superiority index for the ith genotype. In our study, we assumed that θY and 
θS, are the weights for the response variable and the stability (WAASB) (Olivoto et al., 
2019b) supposed to be 50 and 50, indicating that grain yield and stability are equally 
weighted. Furthermore, twenty-one situations with different θY and θS (100/0, 95/5, 90/10, 
..., 0/100) were organized. The values of grain yield and WAASB for the ith genotype are 
Gi and Wi. The rescaled values (0-100) for the response variable (rGi) and WAASB (rWi) 
are as follows. Since the maximum and lowest values for grain yield and WAASB are the 
ideal values, the adjustments were performed using the following equations (Olivoto et al., 
2019b):  

  𝑟𝑟𝑟𝑟𝑖𝑖 =
100 − 0

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚
× (𝐺𝐺𝑖𝑖 − 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚) + 100 

 

  𝑟𝑟𝑟𝑟𝑖𝑖 =
0 − 100

𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 −𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚
× (𝑊𝑊𝑖𝑖 −𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚) + 0 

 
2.4.2 Multi-Trait Stability Index (MTSI) 
 
The Multi-Trait Stability Index (MTSI) (Olivoto et al., 2019b) was analyzed using the 
following formula: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = �∑ �𝐹𝐹𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑗𝑗�
2𝑓𝑓

𝑗𝑗= �
0.5

 
 
Where Fij is the jth score of the ith genotype, Fj is the jth score of the ideotype, and MTSI is 
the Multi-Trait Stability Index for the ith genotype. Therefore, the genotype that has the 
lowest MTSI is more ideotype-like and has a high MPE for every variable that was looked 
at in every location. Steps followed to calculate the MTSI are: 
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Steps for calculating MTSI: 
1. Define the ideotype, specifying traits to be maximized or minimized. Factor 

analysis of WAASBY is performed, followed by calculating the Euclidean distance between 
genotype and the ideotype. 

2. Assign weights, prioritizing traits such as grain yield (GY) and stability. 
3. Compute the WAASBY index using the waasb () function in the metan package. 
4. Use the mtsi () function to identify genotypes most similar to the predefined 

ideotype, emphasizing desirable traits. 
 

3. Results and Discussion 
 
Multi-environment trials (METs) are essential for evaluating crop yield and adaptability 
across diverse conditions (Malosetti et al., 2013). These trials improve genotype selection 
precision by analyzing genotype-by-environment interaction (GEI) using tools like mega-
environment analysis, performance assessment, and stability analysis (Yan et al., 2007; 
Olivoto et al., 2019a). GEI, caused by differing genotype responses to environmental 
changes, is influenced by environmental diversity (e.g., location, climate, altitude) and 
genetic variability, often resulting in significant interactions crucial for genotype evaluation. 

In this study, the nine trial locations exhibited substantial environmental variability. 
Soil properties varied (Table 1), with Kustia and Rangpur showing less-than-ideal 
conditions for rice compared to other sites. While clay loam, silty clay, or clay soil are 
optimal for rice, differences in texture and climate affected performance. Higher 
temperatures were observed in Kustia, Rajshahi, and Satkhira, while rainfall varied 
significantly, with Kustia, Rajshahi, Barishal, and Sonagazi receiving the least (Figure 1). 
These variations highlight the importance of diverse environmental conditions in METs. 
Genotype stability, linked to consistent phenotypic performance across environments, 
remains a key factor in evaluating adaptability (Becker & Léon, 1988). 
 
3.1 Genetic parameters and mean performance evaluation 
 
The LR test revealed significant genotype-environment interactions (GEI) for all studied 
traits (p < 0.05, Table 4). Restricted maximum likelihood analysis showed that 46.34% of 
phenotypic variation was due to genotypic variance, 26.77% to environmental effects, and 
17.28% to GEI, with 8.04% attributed to residual variance (Table 5). Genotypic variance 
exceeded environmental, residual, and GEI variance for all traits (Figure 2). In the random-
effects model, phenotypic variation was partitioned into components of environmental, 
environmental/block, GEI, and residual (error) variance, with genotypic variance treated as 
a random effect. 

Grain yield across locations ranged from 5.43 t/ha in Rajshahi to 4.35 t/ha in 
Habigonj, with the highest genotypic yield recorded for BR9786-BC2-132-1-3 (5.73 t/ha) 
and the lowest for BRRI dhan33 (4.19 t/ha) (Figure 3(a), 3(b)). Broad-sense heritability was 
high for most traits except panicle number per plant and spikelets per panicle, with  
genotypic selection accuracy (AS) ranging from 1 (GD) to 0.93 (TN & SPN) (Table 6).  
Coefficients of genotypic variation (CVg) were higher than residual variation (CVr) for all 
traits, with the highest CVg for yield (9.45) and the lowest for GD (4.07) (Table 7). 

Plant height varied significantly among genotypes, with the tallest plants recorded 
in BR9786-BC2-132-1-3, followed by BR9786-BC2-119-1-1, and the shortest in BRRI 
dhan49. Growth duration was longest in BRRI dhan49 and shortest in BRRI dhan33, with 
three genotypes having 130 days and the remaining three 127 days of growth (Table 8). 
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The number of tillers per plant was highest in BR9786-BC2-132-1-3 and BRRI dhan49, 
while BRRI dhan33 had the fewest. BRRI dhan49 also produced the highest spikelets per 
panicle, followed by BR9786-BC2-132-1-3 and BR9786-BC2-119-1-1. Thousand-grain 
weight was greatest in BR9786-BC2-124-1-2, BR9786-BC2-124-1-5, and BR9786-BC2-
132-1-3, with BRRI dhan49 having the lowest (Table 8). 

 
Table 4. P-values for likelihood ratio test of the traits analyzed  

 
Yield PH GD PN SPN TGW 

GEN 3.77E-09 4.83E-13 9.43E-22 4.04E-09 2.73E-09 4.77E-54 

GEN:ENV 2.35E-14 7.01E-36 8.42E-71 9.01E-11 9.66E-12 6.97E-05 

 
Table 5. Percentage (%) of variation  

Source Yield PH GD PN SPN TGW 

ENV 28.13 45.77 53.96 20.01 12.55 0.22 

REP(ENV) 1.95 0.38 0.06 4.85 1.80 0.33 

GEN 33.69 35.09 37.90 34.61 40.46 96.31 

GEN:ENV 24.42 15.97 7.71 25.20 28.78 1.57 

Residuals 11.82 2.79 0.37 15.33 16.40 1.57 

 

 
 

Figure 2. Assessment of rice trait variability across nine diverse environments: Exploring 
the proportion of phenotypic variance in six genotypes and three check varieties. Where 

GD: Growth Duration, PH: Plant Height, SPN: Filled Spikelets/Panicle, PN: Panicle 
Number, TGW: 1000 grain weight 
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(a) 

 

 

(b) 

 

 

 
Figure 3. (a) Average locational grain yield (GY) of nine studied rice genotypes and  

(b) Average genotypic rice grain yield in nine studied locations 
 

Table 6. Broad sense heritability (%) and selection accuracy (AS) of yield and yield related 
parameters in nine locations 

ENV Heritability (%) AS 

Yield PH GD PN SPN TGW Yield PH GD PN SPN 

Barishal 86 93 99 75 91 100 0.93 0.96 1.00 0.87 0.95 
Cumilla 85 98 100 88 78 100 0.92 0.99 1.00 0.94 0.88 
Gazipur 99 99 100 100 98 99 0.99 1.00 1.00 1.00 0.99 
Habigonj 97 99 100 100 95 100 0.99 0.99 1.00 1.00 0.98 
Kushtia 91 97 100 80 78 97 0.95 0.99 1.00 0.89 0.88 
Rajshahi 75 100 99 63 84 99 0.86 1.00 1.00 0.79 0.92 
Rangpur 97 98 100 97 83 99 0.99 0.99 1.00 0.98 0.91 
Satkhira 98 98 100 91 93 99 0.99 0.99 1.00 0.95 0.96 
Sonagazi 88 46 99 90 88 99 0.94 0.68 1.00 0.95 0.94 
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Table 7. Deviance analysis, genetic parameters and variance components of nine rice 
genotypes studied in nine locations 

Parameters Yield PH GD PN SPN TGW 
Phenotypic variance 0.479 48.3 33.1 0.617 142 2.39 
Heritability 0.438 0.615 0.808 0.419 0.43 0.967 
GEIr2 0.308 0.308 0.18 0.275 0.282 0.009 
h2mg 0.909 0.943 0.975 0.909 0.911 0.998 
Selection accuracy 0.954 0.971 0.988 0.953 0.955 0.999 
rge 0.549 0.798 0.938 0.474 0.496 0.294 
CVg 9.45 5.03 4.07 5.73 7.11 6.51 
CVr 7.19 1.79 0.494 4.89 5.81 1.02 
CV ratio 1.31 2.81 8.23 1.17 1.22 6.4 

Where PV: phenotypic variance, GEI r2: GEI coefficient of determination, h2mg: heritability 
of genotypic mean, Acc: accuracy of genotype selection, rge: association among genotypic 
values across environments, CVg: genotypic coefficient of variation, CVr: residual 
coefficient of variation, CV ratio: coefficient of variation ratio 
 
Table 8. Average PH, GD, TN, SPN and TGW of nine rice genotypes across nine locations  

Genotype PH 
(cm) 

GD 
(Days) 

PN 
(per plant) 

SPN 
(per panicle) 

TGW 
(gm) 

BR9786-BC2-119-1-1 115.17 131 8.92 113.38 23.53 
BR9786-BC2-124-1-2 107.23 127 8.56 105.83 24.61 
BR9786-BC2-124-1-5 109.12 127 8.43 107.32 24.37 
BR9786-BC2-132-1-3 119.51 130 9.75 113.64 24.31 
BR9786-BC2-139-2-3 108.58 127 8.65 107.53 23.62 

BR9786-BC2-2-1-1 104.19 130 8.89 110.63 22.83 
BRRI dhan33 (Ck) 103.17 117 8.33 100.42 23.72 
BRRI dhan39 (Ck) 105.80 122 8.60 103.48 23.60 
BRRI dhan49 (Ck) 103.03 135 9.76 128.67 19.56 

CV (%) 1.80 0.51 5.28 5.74 1.00 
LSD 0.05 1.05 0.35 0.25 3.40 0.13 

Where PH: Plant height, GD: Growth duration, PN: Panicle number per plant, SPN: Filled 
spikelets per panicle, TGW: Thousand grain weight 

 
Genotypic yield variation, common in rice trials, has been reported by previous 

researchers. For example, Shrestha et al. (2021) observed yield variation across 12 rice 
genotypes under irrigated lowland and upland rainfed conditions. Locational yield variation 
can result from factors like temperature, rainfall, soil fertility, and differences in 
transplanting time. In this experiment, supplementary irrigation was provided, when 
necessary, but soil fertility status was not initially evaluated. Thus, temperature and 
transplanting time were likely contributors to yield differences across locations. Prior 
studies (Kabir et al., 2014; Nishad et al., 2019; Mann & Dhillon, 2021) have similarly shown 
that variations in these factors significantly impact rice yield. 
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Analysis of variance revealed a significant effect of genotype on grain yield, while 
the notable impact of GEI highlighted differences in genotype performance across 
environments. This variance underscores the importance of conducting trials across 
multiple sites and growing seasons to improve genotype selection efficiency. Substantial 
GEI effects have been reported in various field crops, including rice, by Balakrishnan et al. 
(2016), Sharifi et al. (2017), Das et al. (2019), Huang et al. (2021), and Enyew et al. (2021). 
Instead of relying solely on the significance of GEI effects, we emphasized the application 
of multi-environment trial analytical techniques to better interpret genotype performance 
patterns. GGE biplot analysis proved valuable in identifying optimal test locations, defining 
mega-environments, and determining superior genotypes, all of which are crucial for 
guiding future breeding activities (Yan et al., 2000; Yan & Kang, 2003). Similar studies on 
rice have shown that environment, genotype, and GEI significantly influence yield, as 
demonstrated by Chandel et al. (2010), Suwarto and Nasrullah (2011), Akter and Hassan 
(2014), Rerkasem et al. (2015), Sharifi et al. (2017), Sadimantara et al. (2018), and Rahayu 
(2020). 
 
3.2 Coefficient of correlation among traits of rice 
 
In Figure 4, there was a positive significant correlation observed between PH and grain 
yield (r=0.54), GD and grain yield (r=0.23), PN and gain yield (r=0.82), SPN and grain yield 
(r=0.74), PN and PH (r=0.42), SPN and PH (r=0.19), TGW and PH (r=0.27), PN and GD 
(r=0.26), SPN and GD (r=0.28), SPN and PN (r=0.45). A significant negative correlation 
was found between TGW and grain yield (r=0.18), TGW and GD (r=0.33), TGW and PN 
(r=0.33), TGW and SPN (r=0.53). The results show that these traits were positively 
correlated with rice grain yield, making them crucial traits for introducing genetic 
improvement in rice. Plant breeders can also concentrate their efforts on the characteristics 
that are highly correlated with grain yields in order to create superior rice genotypes. Prior 
research has documented a strong association between GY and PH, PN, SPN, and GD (Li 
et al., 2019; Russinga, 2020; Hasan et al., 2022). 
 
3.3 Selection of rice genotypes through WAASBY biplot 
 
The WAASB index, which utilizes all significant principal components, ensures a 
comprehensive assessment of genotype stability while selecting high-performing and 
stable genotypes. The GY × WAASB biplot (Figure 5) effectively illustrates grain yield and 
stability simultaneously, facilitating the identification of genotypes with broad adaptability 
(Sharifi et al., 2020; Huang et al., 2021; Pour-Aboughadareh et al., 2021). Unlike the AMMI 
Stability Value (ASV), which may misrepresent stability under complex GEI patterns, 
WAASB provides a robust framework for classification and selection (Olivoto et al., 2019a). 

The biplot highlights genotypic variation and is divided into four quarters. 
Genotypes in the first quarter, such as BRRI dhan33 and BRRI dhan39, showed high 
WAASB values, indicating instability but with potential for environment-specific adaptation 
(e.g., BRRI dhan39 with E9 and BR9786-BC2-139-2-3 with E7). These findings emphasize 
the importance of identifying location-specific genotypes to optimize production (Li et al., 
2019; Zuffo et al., 2020). Genotypes in the third quarter, such as BR9786-BC2-2-1-1, had 
below-average yields but demonstrated high stability, reflecting the yield-stability trade-off 
crucial for breeding programs (Fischer et al., 2014; Bailey-Serres et al., 2019). In the fourth 
quarter, BRRI dhan49 and BR9786-BC2-119-1-1 combined high productivity with excellent 
stability, making them prime candidates for broad adaptability under changing climates  
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Figure 4. Pearson’s correlation heatmap with coefficient values of different traits among 

nine rice genotypes evaluated in nine environments 
 

 
 

Figure 5. Weighted average of the absolute scores vs grain yield of nine rice genotypes 
studied in nine locations of Bangladesh 
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(Cairns et al., 2012). Of note, BR9786-BC2-132-1-3 achieved the highest yield but 
showed relatively lower stability, highlighting the need for targeted regional trials and 
stability improvement to unlock its potential (Zhao et al., 2017). 

Environmentally, E6 emerged as the most stable, with a low WAASB index 
indicating consistent genotype performance. Such stable environments serve as 
benchmarks for evaluating genotypic adaptability and guiding breeding strategies in the 
face of GEI and climate variability (Gage et al., 2017; Olivoto et al., 2019a). 
 
3.4 Ranking genotypes according to performance (grain yield) and stability weights 
 
In plant breeding, balancing grain yield (GY) and stability (WAASB) is essential to identify 
genotypes that combine high productivity with resilience across diverse environments. 
Figure 6 illustrates the impact of these traits on genotype rankings and groups them into 
four distinct clusters: Cluster I: Includes BR9786-BC2-119-1-1, BR9786-BC2-2-1-1, and 
BRRI dhan49, which are high-yielding but relatively unstable. Cluster II: Consists of 
BR9786-BC2-139-2-3 and BR9786-BC2-124-1-2, which exhibit moderate grain yields but 
superior stability. Cluster III: Features BR9786-BC2-124-1-5, BRRI dhan33, and BRRI 
dhan39, which are highly stable but below average in yield. Although reliable, these 
genotypes may require improvements to achieve competitive productivity. Cluster IV: 
Contains only BR9786-BC2-132-1-3, a genotype with the highest yield but poor stability. 
Its exceptional productivity makes it suitable for favorable and predictable environments, 
though it may underperform in variable conditions. This clustering approach, consistent 
with the methodology of Sharifi et al. (2020), provides breeders with a clear framework for 
selecting genotypes that align with specific breeding goals, whether the focus is on 
maximizing yield, ensuring stability, or achieving a compromise between the two. 
 
3.5 Genotype selection through MTSI  
 
Figure 7 shows the rankings of genotypes based on the Multi-Trait Stability Index (MTSI) 
and indicates BR9786-BC2-132-1-3 as the selected genotype. According to Olivo et al. 
(2019b), the cutting point is shown by the red circle (MTSI=1.33). In addition, the index's 
result for grain yield was nearly identical to the WAASBY index's result (Figure 7). 

The MTSI index provides an efficient method for selecting rice genotypes that 
balance both performance and stability, utilizing multi-trait data from multi-environment 
trials (Olivoto et al., 2019b). In the face of large genotype-environment interactions (GEI), 
breeders must prioritize genotypes that perform well across a range of conditions, 
especially given the challenges posed by climate change. This is crucial for ensuring food 
security in an era of shifting weather patterns (Bailey-Serres et al., 2019; Zuffo et al., 2020). 
The ability of MTSI to incorporate key yield components, such as panicle number (PN), 
spikelets per panicle (SPP), and thousand-grain weight (TGW), ensures a more holistic  
assessment of genotypic performance. This method aligns with the growing demand for 
breeding strategies that prioritize resilience and sustainability without compromising 
productivity (Fischer et al., 2014; Gage et al., 2017). Notably, the consistency between 
MTSI and WAASBY results underscores the robustness of this genotype selection process. 
BR9786-BC2-132-1-3, with its shorter growth duration and strong grain yield potential, is 
an excellent candidate for further yield trials and breeding programs. 
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Figure 6. Based on yields and stability, nine rice genotype rankings are shown, each with 
a different weight. The four clusters correspond to four genotype classifications: (1) 
productive but unstable genotypes, (2) stable but low productive genotypes, (3) low 
productive and unstable genotypes, and (4) highly productive and stable genotypes. 

 

 
 

Figure 7. Ranking of rice genotypes based on the Multi-Trait Stability Index (MTSI) 
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4. Conclusions 
 
The combined use of the WAASBY and MTSI methods highlights their effectiveness in 
identifying promising genotypes like BR9786-BC2-132-1-3, which showcases exceptional 
grain yield potential and a shorter growth duration compared to the high-yielding check 
variety BRRI dhan49. Despite its relatively low stability, these advanced selection methods 
underscored its adaptability and strong performance in specific regions. To fully harness 
its potential, further regional trials and stability evaluations are essential. With enhanced 
stability, this genotype could become a cornerstone in breeding next-generation, high-
yielding Aman rice varieties, significantly contributing to future rice production and food 
security advancements. 
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