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Abstract 

 
One of the biggest economic and social concerns of the century will be the issues of water 
resources in the arid regions of the Mediterranean, where mismanagement of water 
resources is a threat to sustainable development. Egypt is one of the nations that will face 
significant issues due to its steady portion of the Nile water. Climate change influences the 
spatial and temporal distribution of water supplies and the amount of crop 
evapotranspiration. In addition, water use in agriculture is by far the highest and is 
frequently criticized as being the least efficient. So, gaining more output per unit of utilized 
water is the idea behind improving agricultural water productivity. Identifying water 
resources and improving water productivity techniques are essential in making the most 
effective use of agriculture in the Mediterranean regions. Freshwater resources in Egypt 
include the flow of the Nile, precipitation, and groundwater. Egypt also uses a variety of 
low-quality water sources including treated wastewater and agricultural drainage water, 
and desalination is also utilized to provide residential water for several regions along the 
Mediterranean and Red Sea coasts. In this paper, water resources in Egypt, its irrigation 
systems, methods of water-saving and improving water productivity are discussed. 
 
Keywords: water resources; climate changes; Egypt 
 

1. Introduction 
 
Egypt, which depends mostly on the Nile River for its water supply, is experiencing water 
stress as a result of scarce water resources, increased population, and water competition 
with countries in the upper Nile Basin. Climate change affects the flow of the Nile and 
presents another challenge for Egypt water resources (Abd Ellah, 2020). Egypt is known 
for having a dry climate, little rainfall, and most of its area is covered by desert, and 
unreliable water supplies (Allam & Allam, 2007). The total land area of Egypt is about 1 
million km2 (238 million feddans). About 8.6 million feddans of the total land area is 
cultivated, the majority of which is made up of recently reclaimed ground. Between 80 and 
85% of the yearly water supply is used for agriculture, which is largely sourced from the 
Nile (Cooper et al., 2007). The Nile Delta, which is situated between the Damietta east 
tributary and Rosetta tributary on the west, and the narrow strip along the river Nile, where  
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the majority of Egypt's agricultural land is concentrated, together account for less than 4%  
of the country's total area. Freshwater scarcity and misuse are a severe and growing 
challenge to environmental conservation and sustainable development (Medany et al., 
2001). Nearly 98% of Egypt's freshwater supplies come from sources outside of its borders. 
The Nile River meets more than 95% of the nation's needs for various types of water (Abdin 
& Gaafar, 2009). Recent challenges pose a great danger to Egypt's water security, with 
the impact of the Ethiopian Renaissance Dam standing out (Mulat & Moges, 2014). 
Additionally, population growth must be taken into consideration because urbanization, 
economic expansion, and population growth have all reduced the amount of commercially 
viable water resources in the area (Hamdy, 2007). Egypt seems to be especially sensitive 
to climate change, particularly given its issue with water scarcity. Climate change will have 
an impact on how water resources are distributed both spatially and temporally, and will 
also increase crop evapotranspiration (Khalil et al., 2016). It is important to understand the 
effects of climate on many management decisions, including crop selection, sowing 
season, and fertilizer application rate (Sadras & McDonald, 2012). Globally, the problem 
of water scarcity is enduring and getting worse, particularly in areas where water resources 
are being exploited for irrigation. According to climate change estimates, there would be 
an increase in evapotranspiration rates, which will have an impact on withdrawals and 
water stress. According to the FAO, agricultural water requirements will grow by 17% by 
2050 under "business as usual" circumstances and by nearly 30% when climate change is 
taken into consideration, including projected expansions in irrigated areas. Climate change 
could result in a doubling of withdrawals by 2050 if the current water use efficiency (WUE), 
expressed as a ratio of crop water consumption to water withdrawals, stays around 50% 
(FAO, 2021).  

Almost half of the world's population presently experiences acute water scarcity 
for at least some of the year due to climatic and non-climatic variables (IPCC, 2022). 
Developing nations, notably those in Africa, are most at danger of suffering severe climate 
change-related consequences. Climate variability is one of the constrains on achieving 
crop water productivity level particularly in water-scarce locations (Wallace, 2000). 
However, a practical approach to Egypt's water crisis consists of only bettering 
management and distribution procedures as well as modernizing and upgrading water 
supply systems. Development and management of water resources must be in harmony 
with energy policies and strategies for efficient resource conservation (Abou-Hadid, 2006). 
Enhancing water productivity in water-scarce regions requires a change in agriculture 
practices and irrigation techniques. On-farm water-productive methods in combination with 
better management will significantly increase water productivity (Waraich et al., 2011). 
Food production must be dependent on increasing irrigation and water use efficiency to 
support this expanding population. Researchers have demonstrated that significant and 
long-lasting increases in water production are possible by utilizing integrated approaches 
to managing natural resources (Oweis & Hachum, 2006). One of the most important and 
fundamental components for the development of crops is water. The agriculture industry 
must concentrate on increasing irrigation water productivity in order to increase crop yield 
and close the food gap (Darwesh, 2018). As Egypt is facing many challenges, there is a 
pressing need to improve water efficiency and supplement the current water sources with 
more sustainable alternatives. Therefore, this paper is overviewed on water resources and 
methods of improving irrigation water productivity in the soils of Egypt as a case study of 
arid and semi-arid regions.  
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2. Water Resources in Egypt 
 
The main difficulty is to address the issue of the rapidly growing hole among the scarce 
water supplies and the growing demand for freshwater since the Egyptian water resources 
system is complex and uncertain (Figure 1). The traditional sources of water in Egypt are 
the inflow of the Nile River, groundwater, and rainfall. However, using wastewater and 
desalinating seawater are examples of unconventional water supplies (Djuma et al., 2016). 
The yearly per capita use of renewed freshwater in 2015 was 650 m3, which is much less 
than the 1,000 m3/year water scarcity criterion. Nearly 98% of the country’s freshwater 
resources, like the Nile River and underground aquifers, are found outside of its borders. 
In fact, 93% of the country's water needs are met by the Nile River. An estimate of the 
overall volume of deep groundwater is around 40,000 billion m3. The average amount of 
rainfall in Egypt is primarily concentrated in the north, totaling about 1.3 billion m3 every 
year (El-Fellaly & Saleh, 2004).  
 

 
Figure 1. Water resources in Egypt (billion m3) (Ministry of water resources and irrigation, 

MWRI) (Abd Ellah, 2020)  
 
2.1 Nile water 
 
The Nile River originates (Figure 2) in the center of Africa and flows through the nations of 
Tanzania, Burundi, Rwanda, Kenya, Congo, Uganda, Ethiopia, Eretria, South Sudan, 
Sudan and Egypt (Muala et al., 2014). The Blue Nile (59%), Sobat (14%), and Atbara (13%) 
contribute 86% of the Nile's flow, while the White Nile contributes 14%, both river systems 
originate in the Ethiopian Plateau (Swain, 2011).  

Since there is extremely little rainfall in Egypt, most Egyptians live close to the Nile 
River and depend on it for all their water needs, where Egypt is dependent on the Nile 
River for 95% of its water resources, is experiencing water stress due to the limited water 
resources, expanding population and climate change (Ibrahim et al., 2018). According to 
the 1959 Nile water deal Egypt made with Sudan, Egypt receives 55.5 billion cubic meters  
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Figure 2. The countries of Nile River Basin (The World Bank) 
 
of Nile water annually. Since then, Egypt's population has been steadily growing, and by  
2050, the country's share of renewable water resources per person is anticipated to reach 
250 m3/person/year (Amer et al., 2017). Due to its limited water resources, which are 
mostly caused by its fixed share of Nile River water and general aridness, Egypt is 
experiencing considerable issues (Allam et al., 2015).  

 
2.2 Ground water  
 
Egypt has a significant hydrogeologic potential due to its extensive groundwater aquifer 
network. One of Egypt's most significant water resources is groundwater.  Water source 
and the type of the rocks that hold the water are two key elements that affect the quality of 
groundwater. Most aquifers in Egypt are typically made of unconsolidated or consolidated 
granular (sand and gravel) material, or fissured and karstified limestone.  These aquifers 
are either unconfined or partially confined. In the Nile River region, there are various 
groundwater aquifers with varying levels of importance for extraction. They range from local 
shallow aquifers that are replenished by rainfall to deep aquifers that are difficult to renew 
and have been heavily exploited (Moneim et al., 2014). Groundwater, which can be found 
in various regions, is considered the second source of freshwater in Egypt and provides 
around 12% of the country's water and it is not an easily renewable resource (Soliman & 
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Soliman, 2017). They range from local shallow aquifers that are replenished by rainfall to 
deep aquifers. The Nile Valley and Delta system's groundwater are examples of shallow 
aquifers. The "Western Desert-Nubian Sandstone Aquifer" is an example of the second 
category that are nonrenewable. It is projected that non-renewable groundwater will be 
used at a rate of 1.65 billion m3/year (Abdel-Shafy & Kamel, 2016).  As shown in Figure 1, 
around 6.1 billion m3/year of groundwater is extracted in Delta, Sinai, and New Valley. The 
Nile, Nubian Sandstone, Moghra, coastal, fissured carbonate, pre-Cambrian fissured and 
weathered hard rock, groundwater in Sinai, and groundwater in the Western Nile Delta 
aquifer systems are the principal subsurface reservoirs in Egypt (Allam et al., 2003). The 
main groundwater aquifer systems in Egypt are shown in Figure 3 (MWRI, 2005).  
 

 
 

Figure 3. Main groundwater aquifers in Egypt 
 

2.3 Rainwater  
 
In Egypt, precipitation (mostly rain or rainfall) is limited to the country's narrow north coast. 
The majority of Egypt's remaining land (more than 95%) is desert. Rainfall ranges from 
zero millimeters per year in the desert to over 200 millimeters per year in the northern 
coastal area (Abdel-Shafy et al., 2010). In several parts of Egypt, flash flooding and 
sporadic heavy rain are seen. Severe incidents with more than 200 mm of rain per day 
occurred in October between 1973 and 2010 over the Mediterranean basin (Mariani & 
Parisi, 2014). Moreover, there have been exceptional rainfall events in Egypt, with Marsa 
Matruh (the northern coastal governorate) recording the highest total annual precipitation 
of 401 mm in 1994 (Gado, 2017). Figure 4 shows the spatial variation of the average annual 
total precipitation over the country. 
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Figure 4. Allocation of mean annual precipitation in Egypt (Gado & El-Agha, 2020)  
 

A severe rainfall occurrence with powerful storms in October 2016 in Ras Gharib 
city on the Gulf of Suez resulted in a flash flood tragedy for the city's oil production sector  
(Elnazer et al., 2017). Most of Egypt is a hyper arid country with limited rainfall in winter  
season (Abdel-Maksoud, 2018). Rainwater is mostly focused on a small area of land along 
Egypt's coast and gradually declines to the south (Rayan et al., 2004). Less precipitation 
and more evaporation result in less groundwater recharge. It is anticipated that these dry 
conditions and the decline in rainfall will increase the strain on the water supply. 
Additionally, rising sea levels and temperatures will also trigger seawater intrusion in 
coastal groundwater aquifers (Iglesias et al., 2007). The total amount of rainwater is about 
1.3 billion m3/year and the rainwater is used in different areas in Egypt as follows: 0.38 
billion m3/year to supplement irrigation in the Nile Delta, 0.45 billion m3/year in Sinai, 0.20 
billion m3/year in the Red Sea Coast and 0.27 billion m3/year in Alexandria and Marsa-
Matrouh (Abdel-Shafy et al., 2010). As shown in Figure 4, a lot of rainwater is harvested in 
Alexandria, Baltim, Marsa Matrooh, and Dabaa. The rainfall resource comprises a minor 
part of the water resources of Alexandria governorate while it contributes comparatively 
substantial percentages in both North Sinai and Marsa Matrouh Governorates. Rainwater 
harvested from Alexandria's urban areas has the potential to boost rainfall in the 
governorate's water resources by 50%. Also, water harvest from urban areas like Marsa 
Matrouh and Dabaa cities can substitute for some of the water needed for seawater 
desalination, reducing the associated overall expenses (Gabr et al., 2022).  
 
2.4 Drainage water 
 
Egypt's water demand is greater than its traditional supply, making the utilization of 
unconventional water resources essential. Since 1920, Egypt has been one of the first 
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countries to reuse water (Abu-Zeid et al., 2014). One of the newest applications for which 
Egypt has enough water is the treatment of drainage water (Abdin & Gaafar, 2009).  At 
several locations, drainage water is reinjected into the streams that supply the Nile Delta. 
This recycling greatly raises the Delta's overall water efficiency (Molle et al., 2016). The 
reuse of agricultural drainage water in the Nile delta is 9.70 billion m3/year and domestic 
treated wastewater is 2.90 billion m3/year (Abd Ellah, 2020).  
 
2.5 Desalination 
 
Egypt's precarious water resource status compels the government to enhance its use of 
unconventional water sources (reuse of wastewater and desalination). These resources 
make up 22.2% of all the water that is readily available. According to estimates, 
desalination produces 0.5 billion m3 /year of water annually, and by 2030, that number will 
have increased to 1 billion m3/year (Wahaab et al., 2021). Desalination has been taken into 
consideration in Egypt as a strategic water resource alternative for the development of rural 
areas, particularly in coastal areas. Three sources of water that can be desalinated: 
groundwater, seawater, and wastewater. Desalination facilities are the most practical 
response to the enormous water demand in dry areas, particularly in Egypt with its 
constrained Nile River water resources and anticipated drought brought on by climate 
change and upstream dam construction. There are numerous desalination technologies in 
use, including thermal and membrane systems. Because of its low energy requirements, 
low investment costs, ease of use, and high production capacity, reserve osmosis 
desalination process is the best method for use in Egypt (Elsaie et al., 2022). Batisha 
(2007) showed that there are about 9 billion m3/year agricultural drainage water discharges 
to the Mediterranean due to its high salinity which prohibits its reuse. 
 

3. Climate Change 
 
Climate change has implications for water management in Mediterranean regions 
(Madrigal et al., 2024). The studies forecast that global food and water resource issues will 
get worse due to prolonged climate change (Pokhrel et al., 2021). One of the main 
concerns in agricultural systems is global climate change, which is characterized by the 
global warming brought on by an increase in the atmospheric carbon dioxide concentration 
(IPCC, 2014). The increase in greenhouse gas emissions will result in a temperature rise 
of around 2.12οC by 2050 and 3.96οC by 2100 in the middle Egypt region. As a result, by 
2050 and 2100, the irrigation water requirements for wheat crops are anticipated to rise by 
6.2 and 11.8%, respectively. The productivity of wheat will also decrease by 8.6 in 2050 
and 11.1% in 2100 (Mostafa et al., 2021).  The availability of water resources may be 
impacted by climate change. In many areas, agriculture depends on groundwater. The 
recharge of groundwater is a by-product of irrigation return flow. Aquifer storage may 
therefore be important as a result of climate change (Yu et al., 2010).  

Egypt may have major negative economic effects from climate change. The Nile 
River's flow may drop, and this could have an impact on the nation. Egypt features a sizable 
area of low-lying coastal regions that are densely populated and have a robust agricultural 
sector. These regions are extremely susceptible to climate change. Given its reliance on 
Nile water and susceptibility to temperature increases, agriculture in Egypt is extremely 
vulnerable (Smith et al., 2014). Also, many climatological studies predict that as 
temperatures rise, evapotranspiration will significantly increase on Egyptian soil, especially 
given the country's historically irrigated agriculture. Additionally, the anticipated high 
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temperature would raise local water demands, particularly for the agriculture industry. The 
greatest obstacle to sustainable agricultural expansion in Egypt under the current and 
future climates is the country's limited water resources and water scarcity (Khalil et al., 
2016). The total amount of water needed for agriculture in the Arabic countries will rise by 
a percentage ranging from 9% to 36% under a 2oC temperature increase (Ouda et al., 
2011). For example, in the El-Behira governorate (North Egypt), the water requirements 
for wheat and maize would rise by 2 and 15%, respectively, in 2040 (Ouda et al., 2015). 
Under future climate change, the pressure on agricultural water use will be increased. 
Climate change circumstances are predicted to raise the evapotranspiration values for all 
of Egypt's governorates, which will have an impact on water requirements, especially in 
Upper Egypt and some sections of Lower Egypt (Khalil et al., 2016). The rapidly intensifying 
water issue is made worse because climate change frequently alters both the quantity and 
quality of water available. The hydrological cycle has been negatively impacted by climatic 
extremes over the past few decades. These effects include significant changes in global 
precipitation patterns, an increase in atmospheric water vapor concentration, glacier 
melting, floods, soil erosion, and drought (Sukanya & Joseph, 2023).   

Three major issues are the result of climate change in Egypt: (1) rising of sea level, 
which could endanger the coastal region and the Nile Delta; (2) the rising temperature, 
which would require Egypt to alter her agricultural policy; and (3) water shortage 
(Mahmoud, 2017).  As a result, Egypt may face a serious threat from climate change in the 
areas of agriculture, food safety, and water shortage. Egypt should therefore establish an 
urgent plan to prevent any problems that may arise as a result of these changes in the 
country's climate (Froehlich & Al-Saidi, 2017).  Due to its geographic location, Egypt 
experiences unusual weather, with Mediterranean-like conditions for its coastal parts in the 
winter and dry conditions in the summer, and with temperatures occasionally topping 40οC 
in the deserts. The principal cities of Egypt that are situated in the desert, such as Luxor, 
Aswan, Asyut, Siwa, and Sohag, have greater summertime temperatures than at higher 
elevations, such as in some of the mountains in Sinai like Saint Catherine. Egyptian 
geological zones, which include the Sinai Peninsula (6%), the Eastern desert (22%), the 
Western desert (68%), and the Nile River and delta (approximately 4% of the country's 
total size), could be utilized to describe Egypt’s climate (El-Ramady et al., 2019). The 
Mediterranean Sea has a considerable impact on the climate of northern coastal areas. 
The climate in Egypt varies greatly, ranging from a temperate Mediterranean environment 
along the northern coast to a hot desert temperature in the Upper Egypt region. The winter 
months in Egypt are December through February, whereas the summer months are June 
through August. Crop production is extremely susceptible to climatic variations. Thus, 
climate change will result in significant changes in crop distribution. By 2100, the production 
of wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) would 
decrease by 5-50%, 20-30%, and 20-45%, respectively, if the current changes in climate 
and greenhouse gas emissions had continued (Hassan et al., 2022).  Water resources and 
agriculture in the dry areas will eventually be severely impacted by climate change. 
Because of the high temperatures and decreased rainfall during droughts, rain-fed agro-
ecosystems will be more vulnerable to stressors (Alkatb, 2022). Monthly climatology of 
temperature and precipitation over the period of 1991-2020 of Egypt are shown in Figures 
5 and 6, respectively. 
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Figure 5. Monthly climatology of Min-temperature, Mean- temperature and Max-
temperature (οC) 1991-2020 of Egypt. (Data is presented at a 0.5º x 0.5º (50km x 50km) 

resolution by the Climatic Research Unit (CRU) of University of East Anglia. (Climate 
change knowledge portal. https://climateknowledgeportal. World  

bank.org/country/Egypt/climate-data-historical) 

 
 

Figure 6. Monthly climatology of precipitation (mm) 1991-2020 of Egypt. (Data is 
presented at a 0.5º x 0.5º (50km x 50km) resolution by the Climatic Research Unit (CRU) 

of University of East Anglia. (Climate change knowledge portal. 
https://climateknowledgeportal. World bank.org/country/Egypt/climate-data-historical) 
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4. Improving of Irrigation Water Productivity 
 
Crop water productivity is controlled by plant specific factors, climate factors and 
management factors (Connor et al., 2011).  To boost water use effectiveness and make 
the transition to a more sustainable use of water in agriculture, there must be an 
improvement in water use efficiency through: 
 
4.1 Water Saving  
 
Improving of irrigation water use efficiency mainly depends on improving crop productivity 
or saving water. To produce a high yield with the least amount of water input, emphasis 
should be on how to increase utilization rates and water usage efficiency. An agricultural 
system that saves water is one that uses integrated farming practices to better utilize 
irrigation systems and natural rainfall (Shan, 2002). In other words, the aim is to maximize 
the ratios of economic benefit/biomass yield; water consumption/soil storage of water; 
transpiration/water consumption; and soil-stored water content/volume of precipitation 
(Deng et al., 2006). To meet crop water needs, irrigation scheduling techniques and proper 
irrigation system selection and use are critical components of water conservation and 
saving while conserving water use and simultaneously maximizing crop profit within the 
limitations of water shortage (Amer et al., 2017). The most effective water-saving 
techniques in irrigated agriculture are pressurized water application techniques (sprinkler 
and micro irrigation). Nowadays, sprinkler irrigation (35 million ha) and micro irrigation 
account for around 15% (44 million hectares) of the total irrigated land in the world (9 million 
ha). A high application efficiency is also provided by improved surface irrigation techniques 
like level furrows and dead level basins (Kulkarni, 2011).  
 
4.2 Water harvesting 
 
Conserving rainwater is one suggested method for meeting water demand. Water 
harvesting is the collection and storage of rainfall, either above or below ground, with the 
goal of reducing condensation brought on by hydrological activity (Gould, 1999).  In dry 
areas, precipitation is typically insufficient to meet the essential needs of crops. It is 
negatively distributed throughout the growth season for crops and frequently manifests at 
a high intensity. The Mediterranean region frequently has dry spells throughout the growth 
season for crops because rain typically arrives in intermittent, unexpected storms and is 
largely lost to evaporation and runoff (Oweis et al., 1999).  Water harvesting is a potential 
technique that has gained widespread acceptance around the globe and is used to address 
issues with water scarcity in agricultural production. Depending on the situation and the 
goal, micro- and macro water harvesting techniques are used in dry, semiarid, and tropical 
locations. By providing irrigation water at a crop's vital growing stage, the implementation 
of a water collecting system has been proven to have a favorable impact on agricultural 
productivity and increase yields (Komariah & Senge, 2013). In arid and semiarid 
environments, rainwater harvesting is crucial for water conservation. It is imperative that 
these techniques be improved in order to lessen water stress caused by climate change 
and population increase (Mourad & Berndtsson, 2011).  Also, a great option for increasing 
crop yields in arid lands is supplemental irrigation, which combines dryland farming and 
minimal irrigation. It improves yield and water productivity in arid soils by supplying small 
amounts of water, especially during crucial times of crop growth (Alkatb, 2022).  
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4.3 Limited irrigation 
 
Agriculture is undoubtedly being forced to cede some of its share to higher priority users, 
particularly the home and industrial sectors, due to a fierce competition among water-using 
industries. Limited irrigation refers to the provision of supplemental irrigation during crucial 
growth stages while inducing a soil water deficit during noncritical periods of crop 
development. It is a technique for crop management in which irrigation systems that can 
only deliver a part of the water needed for crop growth are paired with dryland farming 
(Kang et al., 2003). Deficit irrigation, which irrigates for less yield per unit land, can save a 
significant amount of water that can then be used to irrigate more land, increasing the 
amount of food that can be produced with the water that is available (Amer et al., 2017). 
For effective irrigation planning, the timing and volume of water applied must correspond 
to the actual field conditions. In limited irrigation as opposed to full irrigation, more control 
over water application level and timing is required (Jabeen et al., 2022). Reducing the 
frequency of irrigations and water applied could help alleviate water depletion. Deficit 
irrigation is defined as water application below crop water requirements. Moderate water 
deficit during grain filling increases mobilization of assimilate stored in vegetative tissues 
and grain, resulting in greater grain yield and water use efficiency (Zhang et al., 2018). The 
benefits of effective irrigation scheduling include not just increasing crop productivity but 
also conserving time and energy, which enables everyone to maintain environmental 
health. Wang & Cai (2009) found that optimal irrigation decisions can offer significant 
economic value over conventional irrigation decisions. In essence, proper soil moisture 
management and efficient water use are essential for improving the efficiency of 
agricultural water utilization in arid and semi-arid regions (Jabeen et al., 2022).  
 
4.4 Crop management  

 
Since water demand is outpacing supply on a worldwide scale, boosting agricultural output 
per unit evapotranspiration is becoming everyone's responsibility. Additionally, this 
requires a mindset change away from maximizing yield per unit. The photosynthetic 
metabolic process differs between C3 and C4 plants. Because of this, there are differences 
between these two plant groups in the trade-off between photosynthetic leaf carbon uptake 
and water loss, which is often higher in C4 plants. For instance, sorghum and maize 
produce more grain per unit of seasonal transpiration than their C3 counterparts, wheat 
and barley (Sadras et al., 2011).  By selecting crop varieties that are well suited to the 
environment, decreasing wasteful water use, and maintaining healthy, vigorously growing 
crops through improved water, fertilizer, and agronomic management, agricultural water 
productivity can be increased (Descheemaeker et al., 2013). Generally, the adoption of 
various agronomic/management practices such as growing hybrid/improved varieties 
rather than local varieties, timely crop sowing, crop sowing at optimal inter and intra row 
spacing, and the application of the optimum dose of fertilizers at the proper time can lead 
to improve water use efficiency. Vala & Chavda (2021) concluded that adoption of different 
agronomic/management practices such as the growing of hybrid/improved varieties rather 
than local varieties, the timely sowing of the crop, led to increase water use efficiency. 
 
4.5 Soil mulching  
 
To encourage plant growth and crop, mulching is the process of applying an organic or 
synthetic ‘mulch’ to the soil's surface around plants. In arid and semi-arid regions, mulching 
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has emerged as a crucial water conservation technique in current agricultural production. 
The mulch material blocks sunlight from reaching the soil's surface, preventing evaporation 
by holding onto soil moisture, and adjusting soil temperature, and thus increase water use 
efficiency (Kader et al., 2019). Mulch insulates soil, protecting roots of plants and living 
organisms from a variety of weather conditions (Yu et al., 2018; Kader et al., 2019). One 
primary function of mulching is to preserve soil moisture by minimizing surface evaporation 
and erosion (Qin et al., 2016).  Mulching is a practical technique that may help to retain 
moisture, reduce evaporation, change soil temperature, improve aeration, and release 
nutrients from the soil profile (Sharma et al., 2005; Ahmad et al., 2007).  As a moisture-
conservation strategy, grass mulch should be used because it significantly boosted lettuce 
output (Mkhabela et al., 2019). Mulching was shown to be positively impact crop 
development as well as the quantity and quality of the yields produced (Ramakrishna et 
al., 2005). Plastic mulches can be effectively used for sustaining plant growth and yield 
(Sharma & Bhardwaj, 2017).  Mulching is a method that entails putting materials into the 
field before, during, or shortly after sowing in order to support and spread throughout the 
soil surface. These materials can include plastic, agricultural waste, livestock manure, 
sand, boulder, and cement (Gan et al., 2008). Mulching can be added to improve crop 
productivity, plant growth, and reduce water usage (Yu et al., 2018). There are three 
different categories of mulching materials, which are organic, inorganic, and special 
materials. Organic mulching materials are created from agricultural waste, wood industrial 
waste, processed leftovers, and animal manures (El-Beltagi et al., 2022). Inorganic 
mulching materials include polyethylene plastic sheets and synthetic polymers. Moreover, 
surface coatings made of biodegradable polymer films for flexibility and simplicity of use 
that are environmentally friendly products include several novel biodegradable and 
photodegradable plastic films (Kader et al., 2017).  
 
4.6 Soil conditioners  
 
It is critical that the soil be properly managed to improve crop water productivity. Water use 
efficiency and soil water content retention may be significantly impacted by soil 
amendments mixed with irrigation water (Ali et al., 2018). Soil management practices that 
improve water retention, help roots draw more water from the soil, and reduce leaching 
losses all have the potential to improve water use efficiency. The capacity of the soil to hold 
water could benefit from improved soil management practices that increase the quantity of 
organic matter in the soil (Hatfield et al., 2001). Certain organic compounds and soil 
conditioners improve the water retention capacity of sandy soils with low aggregate stability 
and water retaining capacity (Brady & Weil, 2008). There are different soil additions, both 
natural (such farmyard manure, compost, and factory waste) and/or synthetic (like 
polymers, ratings, glue, and produced paper waste), that can assist the soil hold onto more 
water and prevent evaporation (Eldardiry& Abd El-Hady, 2015).   
 
4.7 Nutritional management 
 
A significant way to increase production and water use efficiency is through proper plant 
nutrition. When there is a limited supply of water, plant nutrients are crucial for improving 
water usage efficiency. Superoxide dismutase (SOD), catalase (CAT), and peroxidase 
(POD) concentrations are increased in plant cells by the application of nutrients such N, K, 
Mg, B, Zn, and Si, which minimize the toxicity of reactive oxygen species (ROS) produced 
under water-limited conditions (Waraich et al., 2011). In dry and semi-arid regions, the 
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addition of organic fertilizer to N and P fertilizer improved soil water use efficiency (WUE) 
and crop yield (Liu et al., 2020). Furthermore, the rational fertilization application of 
fertilizers under water-limited conditions improved water use efficiency (Zhang et al., 2019). 
There is a need to develop new technology for the efficient use of water and fertilizer for 
agriculture due to rising food demand and declining water resources. The environmental 
sustainability and the preservation of soil and water resources must be taken into account. 
Therefore, using water and fertilizer efficiently and sparingly is crucial for protecting the 
environment (Hagin et al., 2003). According to Liu et al. (1998), nitrogen fertilizers 
increased root growth of wheat and improved root system development which in turn led 
to increased crop production and water use efficiency. 
 
4.8 Irrigation systems management 
 
Low crop water productivity (CWP) in water-limited settings, particularly in developing 
countries, has been caused by subpar irrigation methods and management (Lacirignola et 
al., 2014). It is necessary to apply water accounting and to change from traditional 
agricultural production methods that attempt to maximize yield per unit area of soil to more 
water-conscious techniques that strive to optimize crop output per unit water consumption, 
which is measured by evapotranspiration (Kilemo, 2022). The flood irrigation system, which 
accounts for 60% of the country's irrigated land, is the most popular one in Egypt. Its 
effectiveness is between 40% and 50% (Karajeh et al., 2013). To accomplish the aims of 
the 2030 Sustainable Development Strategy, which seeks to embrace the integrated water 
resource management method, it is crucial to increase the deployment of advanced 
irrigation technologies. Such technologies promise to improve the efficiency of the irrigation 
system from 40% to 80% (Wahba et al., 2018). Irrigation is essential for enhancing 
agricultural output in semiarid and arid climates. To boost productivity per unit area in the 
face of water scarcity, new technology must be used (Okasha et al., 2016). As is common 
knowledge, pressured irrigation systems like sprinkler and drip irrigation utilize substantially 
less water than traditional irrigation techniques (surface irrigation). The use of 
contemporary irrigation systems in newly reclaimed soil, and the conversion of surface 
irrigation to drip irrigation systems can achieve higher water use efficiency. Chemicals and 
fertilizers can also be used in the precise concentrations needed, and drip irrigation and 
fertigation have the capacity to greatly increase the availability and uptake of water and 
nutrients in soil, increasing crop yield (Çetin & Akalp, 2019). Using of water-drip irrigation 
fertilization technology increased crop productivity and water use efficiency (Fan et al., 
2020). The adoption of sophisticated irrigation systems has raised irrigation efficiency. 
Additionally, adopting water-saving methods for water transportation and application is a 
requirement for irrigation that uses less water by converting to more effective irrigation 
system to improve WUE (Deng et al., 2006).  

A smart irrigation system that can conserve water is necessary since irrigation 
uses a lot of water. By automatically watering plants and gardens according to their needs, 
water is conserved. Smart systems enable overall water savings of 67% when compared 
to conventional methods. So, in water-scarce places and for individuals living far from their 
farms, effective water use and visit-free monitoring offer clever solutions (Nawandar & 
Satpute, 2019).  Smart systems ensures that irrigation pumps last for a long time, and often 
involve water recycling, which further contribute to water saving. In this way, smart systems 
can be used to make sure that different plants are watered according to the different 
amounts of water they require for efficient growth. This would be helpful in areas where the 
practice of irrigation is complicated by a lack of water (Ogidan et al., 2019).  The use of 
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new irrigation systems is very important to increasing the yield per unit of water used and 
decreasing water loss. Importantly, the management and creative design of integrated 
water distribution and application schemes could lead to enhance gain yield.  This is 
essential to preserve water and encourage the highest crop growth to maximize water use 
efficiency (WUE) through the reduction of weed transpiration, runoff, seepage, and 
evaporation and the choice of cultivars that are well suited to the local soil and climatic 
conditions is another strategy to achieve the main goal (De Pascale et al., 2011).  

 
5. Conclusions 

 
Studies have shown that improving water productivity in irrigated agriculture is unavoidable 
due to climatic change and limited water. To increase water use efficiency, further 
development measures necessitate a review of current water allocations. Additionally, to 
close the gap between water supply and demand, nonconventional water resource choices 
must be investigated. Effective moisture conservation and efficient use of the limited water 
resources are necessary to significantly improve agricultural water use efficiency. This 
necessitates a shift in crop production practices from the more conventional ones that 
attempted to maximize crop output per unit area of land to more water-conscious ones that 
try to optimize crop yield per unit of water consumption, which is determined by 
evapotranspiration. Therefore, Egypt should create a quick plan to better control issues 
that may occur as a result of climate change and water shortage by the use of rainwater 
harvesting; the management of agricultural water resources to maximize crop productivity 
by using less water; enhancing the effectiveness of the water supply by identifying leaks 
and improving irrigation distribution and conveyance efficiency; and using modern irrigation 
systems and launching water-saving initiatives. Under virtual water trade agreements, it is 
advised that water-poor countries plant high-value crops and use the proceeds to acquire 
food from water-rich countries. 
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