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Abstract 
 
Living organisms employ various approaches to evade stressful environmental conditions 
such as high and low temperatures, salinity, and drought. The most adapted strategy to 
circumvent such stress conditions is the use of osmolytes, which are low molecular weight 
organic compounds. A large amount of evidence clearly demonstrates the role of 
osmolytes in conferring stability to proteins. Much is now known about the interaction 
mechanisms that exists between osmolytes and proteins. Osmolytes exert their effect on 
protein stability by acting on the thermodynamic equilibrium, ‘native conformation ↔ 
denatured conformation’ in the reverse direction. There are various forces that osmolytes 
interact with proteins to make such an effect on this equilibrium. The preferential hydration 
phenomenon is most accepted for the explanation of protein folding in the presence of 
osmolytes. The unfavorable interaction between the peptide backbone and osmolyte 
molecules has been understood to be the driving force for the preferential hydration effect. 
Contrary to this, the stabilization of proteins induced by polyols is solvophobic in nature. 
Numerous other models have been devised to explain the interactions between proteins 
and osmolytes at the atomic level. In this review, we systematically reviewed all major 
forces involved in osmolyte-protein interactions. 
 
Keywords: osmophobic effects; solvophobic effect; protein stability; osmolytes 

 

1. Introduction 
 
One of the hallmark features of proteins is their ability to self-assemble into their functionally 
stable three-dimensional conformations. The self-assembling attribute of proteins helps to 
generate the vast variety and selectivity in all the biological processes carried out by them. 
But all these processes require the compact functional conformation of the protein to be 
stable. It is a well-known fact that the sequence of amino acids (Pierotti, 1965) coupled 
with the property of the solution in which the protein is placed play a huge role in 
determining the stability of the protein (Dill & Stigter, 1995; Yancey, 2004). Usually, the 
solution components comprise of different ions, small organic compounds, salts, and  
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chaperones (both chemical and molecular). It is now known that modifying the properties 
of a protein solution—such as by adding osmolytes, adjusting pH, or varying ion or salt 
concentration—can often correct the folding of proteins prone to misfolding (Yang et al., 
1999; Tanaka et al., 2005; Leandro & Gomes, 2008). Many human genetic diseases occur 
as a result of the incorrect folding of proteins either to their non-functional forms or 
conformationally less stable forms, for example, Phenylketonuria (PKU), Parkison’s 
disease, Alzheimer’s disease, and familial amyloid polyneuropathy (Herczenik & Gebbink, 
2008; Leandro & Gomes, 2008). Missense mutations are also believed to be one of the 
causes of these diseases. Considerable effort and time has been devoted to understand 
the mechanisms and causes of protein aggregation (Dong et al., 1995; Chi et al., 2003; 
Yan et al., 2004), to develop strategies to protect proteins from undergoing aggregation 
and to remodel protein aggregation pathways (Meng et al. 2001; Chi et al., 2003; 
Borwankar et al. 2011), as well as if possible to refold conformationally correct proteins 
from their aggregate forms (Meersman & Heremans, 2003). Additionally, compounds that 
can alter the properties of a protein solution can drive the protein folding into a 
conformationally correct and functional pathway. A variety of low molecular weight 
compounds have been identified to be accumulated in the diverse life forms existing in the 
extremes of environmental conditions throughout the world (Yancey et al., 1982; Yancey, 
2003; Yancey et al., 2004). The fluctuations in the environmental conditions disturb the 
osmotic balance inside the cell which severely impairs protein structure, stability, and 
function (Diamant et al., 2001). Under these conditions it has been reported that organisms 
accumulate osmolytes (low molecular weight compounds) and regulate cell osmolarity, and 
thus protecting protein stability and function (Yancey, 2005; Bolen & Rose, 2008; Hoffmann 
et al., 2009). 
 For each different extreme environmental condition, a different osmolyte is 
accumulated by the living cells. For example, disaccharide osmolytes serve as a rescue 
mechanism under freezing temperatures, while methylamines are specifically accumulated 
to mitigate high urea stress conditions, among other examples (Crowe et al., 1992; Storey, 
1997; Yancey, 2004). Apart from these, there are certain osmolytes which may perturb 
protein stability or may sometimes refold the misfolded proteins into their correct 
conformation (Chang et al., 1996; Jacob et al., 1997; Uversky et al., 2001; Leandro & 
Gomes, 2008). Therefore, it is crucial to delineate the effects of each individual osmolyte 
on different proteins, determining whether their impact is universal or protein-specific. This 
approach may prove to be a promising and effective strategy for correcting or treating 
various proteopathies. 
 
1.1 Classification and distribution of osmolytes 
 
The characteristic properties that differentiate osmolytes from other organic compounds 
are twofold: (1) they never bind to proteins and therefore universally stabilize them 
(Timasheff, 2002). Since osmolytes solely alter the structure of water, they are compatible 
with enzyme function, preserving enzymatic activity (Myers & Jakoby, 1975; Wang & Bolen, 
1996; Yancey et al., 1982), and stabilizing proteins against denaturing stress conditions 
(Santoro & Bolen, 1992; Taneja, & Ahmad, 1994; Xie & Timasheff, 1997a; Anjum et al., 
2000). (2) Osmolytes are neutral molecules under nearly all conditions (Harries & Rösgen, 
2008). 

Various schemes have been adopted recently to put osmolytes in various 
categories so as to understand their mode of action in protein stabilization (Yancey et al. 
1982; Yancey, 2001). Based on their chemical structure, osmolytes have been put into 
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three categories: (1) polyols and sugars, (2) amino acids and their derivatives, and (3) 
methylamine compounds. Another method of categorization is based on their effects on 
protein function: those that have no effect are termed compatible osmolytes, while those 
that do affect protein function belong to the counteracting osmolytes category (Borowitzka 
& Brown, 1974; Pollard & Wyn Jones, 1979; Bowlus & Somero, 1979; Yancey et al., 1982; 
Wang et al., 1995; Wang & Bolen, 1996; Haque et al., 2005a,b). A third way of categorizing 
osmolytes is based on their ΔGDo (Gibbs energy of stabilization of the protein at 25oC) and 
the enzyme kinetic parameters (Km and kcat) of protein taken together: (1) Class I including 
polyhydric alcohols and amino acids and their derivatives that have no significant effects 
on both ΔGDo and kcat; (2) Class II includes the methylamines, which increase both ΔGDo 
and kcat, and decreases Km; and (3) sugars that increase ΔGDo, but decrease both Km and 
kcat that belong to class III (Jamal et al., 2009) (see Figure 1). 
 

 
 

Figure 1. Classification scheme for osmolytes 
 

Osmolytes are utilized by all the living organisms: prokaryotes, plant and animal 
kingdom. For example, betaine is found in all forms of life. Taurine, on the other hand, is 
utilized as an osmolyte in both marine invertebrates and mammals (Yancey et al., 1982). 
Sorbitol is found in certain marine algae, fishes, and in the mammalian kidney (Yancey et 
al., 2004; Yancey, 2005). Apart from using individual osmolytes, many organisms 
accumulate a mixture of osmolytes; e.g., the mammalian kidney contains urea along with 
the polyols (myo-inositol and sorbitol), the methylamines (GPC, glycine betaine) and 
taurine (Bagnasco et al., 1986; Garcia-Perez & Burg, 1990).   
 
1.2 Consequences of protein-osmolyte interaction 
 
1.2.1 Native protein-osmolyte interactions  
 
As discussed in detail by Timasheff (1992, 1998, 2002a,b), osmolytes do not have a direct 
interaction with protein: therefore, they are expected not to cause significant alteration on 
the native state of the protein. This characteristic of osmolytes of not altering the native 
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conformation of proteins has been well demonstrated by the spectroscopic measurements 
(Mojtabavi et al., 2019; Kushwah et al., 2020; McParland et al., 2021; Song et al., 2021; 
Khan et al., 2023). Earlier studies showed that the spectral properties of proteins remained 
unchanged when studied using both circular dichroism (CD) spectroscopy and UV-visible 
spectroscopy (Haque et al., 2005a,b; Singh et al., 2005; Haque et al., 2006; Hagedorn et 
al., 2010). This indicates that osmolytes do not interact with the proteins directly. Similar 
results were obtained when the dimensions of a native protein were measured in the 
presence of osmolytes using size exclusion chromatography (Qu et al., 1998; Baskakov & 
Bolen, 1998). Xie and Timasheff (1997a,b,c) also came to the same conclusion based on 
their investigations on RNase-A preferential interaction measurements. Most convincing of 
all were the studies of the co-crystallization of RNase-S fragments with TMAO, sarcosine, 
betaine, and taurine which showed that the osmolytes did not perturb the folded structure 
of the protein (Ratnaparkhi & Varadarajan, 2001). 
 
1.2.2 Osmolyte compatibility with protein function and stability 
 
Polyols (such as sorbitol and myo-inositol), amino acids and their derivatives do not alter 
the protein function and thus can be amassed in cells over a wide range of concentrations. 
This concept of osmolyte compatibility was introduced for the first time for the single celled 
algae, Dunalliela, that inhabits the Dead Sea where it subjected to high osmotic pressure 
to which it responds by accumulating glycerol. Osmolyte compatibility was further 
demonstrated by studies on isolated mammalian renal enzymes (arginosuccinate and 
uricase). No change in the enzyme kinetic properties were seen in the presence of polyols, 
in contrast to the highly perturbing effect of urea and NaCl (Brown & Simpson, 1972; 
Yancey et al., 1982; Clark, 1985). The compatibility of osmolytes with protein structure and 
function is due to the absence of any direct interactions between the proteins and the 
osmolytes. Osmolytes only restructure the solution around the proteins. Polyols are the 
most prevalent molecules among the compatible osmolytes, and they circumvent stress 
like high osmotic pressure and freezing (Yancey et al., 1982; Carpenter et al., 1997). It was 
experimentally shown that protein stability (ΔGDo) and the enzymatic kinetic parameters 
(Km and kcat) of proteins remain unaltered in the presence of polyols, thereby making these 
compounds ideally compatible with enzyme function and protein stability (Haque et al., 
2005a; Jamal et al., 2009). The explanation for this compatible behavior in terms of ΔGDo 
and the enzymatic kinetic parameters at physiological pH and temperature is that the 
osmolytes bring about an adequate enthalpy-entropy balance, or that the osmolyte to the 
protein preferential exclusion (stabilizing force) and preferential binding (destabilizing 
force) cancel out each other (Haque et al. 2005a,b; Haque et al., 2006). Hydrogen 
exchange (HX) rate studies of N-H protons of amides with intermediate rates in the 
presence of sucrose clearly demonstrate that osmolytes do not affect protein function but 
they stabilize proteins (Wang et al., 1995).  
 Numerous examples of osmolytes affecting enzyme function are documented in 
the literature. TMAO was found to counteract the elevation of the Michaelis constant (Km) 
by urea [e.g., Km for ADP of pyruvate kinase (Burg et al. 1996; Yancey & Somero, 1980) 
and creatine kinase (Yancey & Somero, 1980)], the Km for NADH of A4-lactate 
dehydrogenase (Yancey & Somero, 1980) and Km for glutamate of glutamate 
dehydrogenase (Yancey & Somero, 1980). TMAO counteracts urea-induced decrease in 
the Vmax of creatine kinase and arginosuccinate lyase (Yancey & Somero, 1980). KCl was 
found to increase the Km of muscle type lactate-dehydrogenase and TMAO was able to 
reverse the effect of KCl (Desmond & Siebenaller, 2006). Urea, which decreases the Vmax 
of porcine arginosuccinate was counteracted by betaine which increased Vmax (Yancey, 



Srinivasan et al.        Curr. Appl. Sci. Technol. 2025 , Vol. 25 (No. 1), e0261080 
 
 

5 

1992). For enzymes from a wide variety of organisms, Yancey and Somero (1980) found 
that urea alone generally increased Km and decreased kcat, whereas TMAO alone 
counteracted the effect of urea by decreasing Km while increasing kcat. Methylamines have 
been proposed to be activators of functional properties such as Vmax (Yancey et al., 1990). 
However, Burg et al. (1999) showed that urea and methylamines 
(glycerophosphorylcholine, TMAO and betaine) had the similar effect of reducing both the 
Km and Vmax of aldose reductase. Myers and Jacoby (1973)  tested the effects of glycerol 
and other polyhydric alcohols on the kinetic parameters of sixteen enzymes, and found that 
each of the sixteen enzymes tested underwent a change in either Km or turnover number 
or both. In the skeletal muscle myosin, complete inhibition of the K+ EDTA ATPase by urea 
(2.0 M) was observed; TMAO increased myosin activity, while betaine had no effect. TMAO 
or betaine (1.0 M) when combined with urea (2.0 M), effectively protected the ATPase 
activity of myosin against inhibition (Ortiz-Costa et al., 2002).  
 
1.2.3 Osmolytes and its effect on stability-function relationship of proteins  
 
A series of equilibria exist for protein between the most compact globular structure to fully 
expanded random coil and a protein can assume many configurations between these two 
extreme structures. Urea shifts this series of equilibria towards the random coil structure, 
either by increasing binding favored in the random coil form, or by altering the solvent 
environment of the protein. TMAO, shifts this equilibrium towards the compact structure by 
preferentially stabilizing the more compact forms (Mashino & Fridovich, 1987). The effects 
of urea and TMAO were found to differ on xanthine oxidase, alcohol dehydrogenase, lactic 
dehydrogenase, arginosuccinate lyase, and catalase. Urea hindered the activity of all the 
enzymes, and reduced the stability of catalase, according to the hypothesis that urea 
decreases the compactness of globular structure of proteins. TMAO, on the other hand, 
favored compact globular structures over more expanded structures which was 
demonstrated by activation of arginosuccinate lyase, alcohol dehydrogenase, and lactic 
dehydrogenase and by the increased thermal stability of catalase in its presence. However, 
inhibition of both xanthine oxidase and catalase in the presence of TMAO demonstrates 
that the compact globular structure may not be the most active conformer.  Therefore, one 
can conclude that the most stable conformer of a particular enzyme may not be the most 
active state of the protein (Mashino & Fridovich, 1987).  

Myo-inositol, sorbitol and betaine were found to inhibit Na+ /K +-ATPase, Ca2 +-
ATPase, and calmodulin-stimulated Ca2 +-ATPase (CaM) pumps in isolated RBC 
membranes (Moeckel et al., 2002). However, these osmolytes in low concentrations (50 
μmol/L) were found to increase the activity of these pumps. The exact mechanism of 
osmolyte-induced ATPase inhibition is unknown but it is speculated that osmolytes either 
binds to the exposed surface of the pump resulting in dose-dependent inhibition of the 
pump activity, or the osmolytes change the physical structure of the membrane providing 
less favorable conditions for the pump to operate, resulting in lowering of ATPase activity 
(Moeckel et al., 2002). TMAO enhances both the Vmax and kcat/Km of trypsin, but for 
chymotrypsin, under similar conditions, these enzyme kinetic parameters remain 
unaffected (Kumar et al., 2005). Furthermore, TMAO was found to induce conformational 
changes in trypsin but not in chymotrypsin, indicating that osmolyte-induced conformational 
change may lead to change in enzyme activity (Kumar et al., 2005). TMAO decreased the 
catalytic activity of myoglobin but it affected neither the secondary and tertiary structure 
nor the stability of the protein (Bellezza et al., 2009). 

For α-chymotrypsin in the presence of the osmolytes TMAO, betaine, sarcosine, 
proline, and sucrose, showed linear increase in enthalpy (ΔH) and Gibbs free energy 
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(ΔGDo) with osmolyte concentration, while these parameters showed a sharp decrease in 
the presence of denaturants such as urea and GdmCl. Apart from these, the activity of α-
chymotrypsin was not significantly enhanced in the presence of protecting osmolytes, 
though GdmCl and urea inhibited the activity of α-chymotrypsin (Attri et al., 2010). From 
this, one can conclude that though a good correlation is found to exist between enzyme 
stability and function, the relation shows variation with osmolyte type. 
 
1.2.4 Three-dimensional model for protein-osmolyte interactions 
 
Numerous studies on protein structure have reported on the intrinsically disordered 
domains present in one-third of the known proteins. Such domains are kwon as IDRs 
(intrinsically disordered domains) (Darling & Uversky, 2018). These domains have certain 
unique properties, for example, these domains are polar in nature, and have long stretches 
of glutamic acid residues, hence, they will not form alpha-helices at physiological pH.  They 
also have few amin acid residues with hydrophobic aromatic-base side chains. Moreover, 
they are rich in proline. All these unique features lead to the formation of localized 
disordered structures. This disordered structure confers proteins with greater 
conformational flexibility. The proteins containing extensive IDRs are called intrinsically 
disordered proteins, or IDPs (Berlow et al., 2018).  Furthermore, these properties make 
IDPs the hub of all biological pathways (Haynes et al., 2006; Das et al., 2012; Wright & 
Dyson, 2015; Uversky, 2016; Nussinov et al., 2017; Staby et al., 2017). In cells, newly 
translated proteins undergo three-dimensional folding in the endoplasmic reticulum in the 
presence of proteins known as molecular chaperones, such as hsp70 and hsp90 (Radli & 
Rüdiger, 2018). Additionally, osmolytes also help the proteins to fold into the correct three-
dimensional conformation. Studies showed that trimethylamine N-oxide caused a loss of 
function of IDPs by inducing changes in the conformation (Bhat et al., 2017). Trehalose 
demonstrated a gain in structure of a disordered alpha-synuclein protein (Naik et al., 2016). 
Osmolytes may be accumulated inside cells by two pathways- either by de novo synthesis 
or by transport into the cell through specific transport molecules and proteins. Figure 2 
represents the hypothesis given by Rumjanek (2018), explaining the effect of osmolytes 
on the conformation of IDPs. It can be seen from Figure that in the presence of a stressful 
environment, osmolytes are accumulated according to the mechanisms described above. 
Increased intracellular levels of osmolytes influence the conformation of the IDRs and 
change their properties and functions. The refolded IDRs display new conformations that 
may lead to performing new functions in the cell (Blose et al., 2011; Holmstrom et al., 2015).  
 

2. Factors affecting protein stability 
 
2.1 Covalent force 
 
2.1.2 Disulfide bonds 
 
Disulfide bonds are the covalent bonds between two sulfur residues of two cysteines. 
These can be present as inter- or intra-molecular bridges in a protein molecule. This bond, 
which is present in both native and unfolded protein states, has high enthalpic value and 
hence stabilizes the protein to a great extent (Klink et al., 2000).  The disulfide bond 
contributes to protein stability by decreasing the conformational entropy of the unfolded 
polypeptide chain. Approximately 2.5-3.5 kcal/mol of stabilization is conferred by this bond  
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Figure 2. Model for protein osmolyte interaction 

 
to the proteins (Braxton, 1996). Usually, it is extracellular proteins that harbor disulfide 
bonds as the interior of the cell has a reducing environment due to which the sulfhydryl 
groups remain in a reduced state (Fahey et al., 1977). In a few cases, it was observed that 
native S-S bridges were formed only when proteins were folded into their secondary or 
sometimes tertiary structure (Creighton, 1993). The sulfhydryl moieties oxidize readily in 
the extracellular space to form disulfides. Hence, if a cysteine residue in any protein is 
present in the extracellular environment that can lead to a complex protein folding pathway 
with no beneficial consequences. 

Studies in which few novel disulfide bonds were introduced into proteins 
demonstrated mixed results. For example, in the case of T4 lysozyme, out of the five 
disulfide bonds introduced into the said protein, two reduced the protein stability, but three 
stabilized the protein. The net result after the introduction of five disulfide bonds to the T4 
lysozyme was the reduction in stability of the protein as compared to the wild type protein 
(Betz, 1993). However, in the case of RNase Hn and ribonuclease barnase, Kanaya et al. 
(1991) and Clarke et al. (1995) found that the introduction of disulfide bond increased the 
stability of protein by 2.8 kcal/mol and 1.2 and 4.1 kcal/mol, respectively. Therefore, we are 
still far from understanding the role of disulfides in protein structure.  
 
2.2 Non-covalent forces 
 
2.2.1 Hydrophobic interactions 
 
One of the major non-covalent forces stabilizing a protein is hydrophobic interaction. This 
leads to the burial of almost all the hydrophobic groups present in a protein to the interior 
core of a globular protein (Kauzmann, 1959). According to the calculations, if one mole of 
hydrophobic residue is removed from protein surface, it leads to an approximately 4 kcal 
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gain in energy (Alonso et al., 1991). Proteins have a strong tendency to bury all their 
hydrophobic groups in the cores since the presence of such groups only tends to increase 
the total energy of the system. Whenever hydrophobic groups are present on a protein 
surface, they are only to perform some special function. For example, various multimeric 
enzymes bring together their subunits by the hydrophobic interactions between their 
exposed hydrophobic residues.  

The thermodynamic factors that are responsible for the hydrophobic force are still 
not completely understood. When a non-polar compound is transferred from an organic 
solution (reference state) to water, the free energy of transfer (ΔGtr), is given by 
 

ΔGtr = ΔHtr - TΔStr 
 
Where, ΔH (enthalpy), T is the temperature (298.15), and ΔS (entropy). 
 

When the temperature of water is low, the solubility of hydrophobic amino acids 
residues is lower, which causes the mutually attracted water molecules to structure around 
these residues. The negative unfavorable entropy causes the all the hydrophobic groups 
to come together.  On the contrary, at high temperature the entropy of water molecules 
increases, and there is enthalpy driven hydrophobic force (Alonso et al., 1991). 
 
2.2.2 Van der Waals forces 
 
These interactions result from the London forces with distance dependence of 1/r6 and on 
extremely short-range repulsive interactions resulting from the overlap of electron orbitals 
with a distance dependence of 1/r12. If by any means the packing of a hydrophobic core 
can be optimized, then these forces can be optimized. Inside the protein, van der Waals 
interactions are observed between the protein side chains. The packing density of proteins, 
which is in the range of 0.72-0.77 g mL-1 (Harpaz et al., 1994), suggests that very large 
London-forces exist in a native protein.  

A large number of mutational analysis studies (Alber, 1989; Kellis et al., 1989; 
Matthews, 1993; Matthews, 1995, 1996) also indicates that van der Waals interactions 
contributed significantly to protein stability; however, Fersht (1997) noted that it was difficult 
to quantify those forces due to changes in packing and the presence of other interactions 
at the same time. Griko et al. (1994) observed only a small contribution of van der Waals 
interaction (around 0.24 kcal mol-1) to the conformational stability of barnase. However, the 
destabilizing effect of cavities formed in protein cores is mainly due to the loss of van der 
Waals interactions (Kellis, et al., 1989; Harpaz et al., 1994).  
 
2.2.3 Aromatic-aromatic interactions 
 
Weakly polar aromatic interactions can occur due to the asymmetric arrangement of 
electrons in the aromatic amino acid aromatic rings (Makhatadze & Privalov, 1992). 
Approximately, sixty percent of the aromatic amino acids in proteins participate in such 
interactions (Makhatadze & Privalov, 1992).  The partial positive charge of ring hydrogen 
atoms and the partial negative charge of planar ring faces are important in such 
interactions. Three specific orientations with respect to inter-planar angles are responsible 
for these interactions. These are: (1) 0-30o (near parallel face to face interactions), (2) 30-
60o (tilted geometry), and (3) 60-90o (perpendicular T-shaped packing geometry). The 60-
90o orientation is often found in protein. Aromatic-aromatic interactions are formed when 
the distance between centers of aromatic rings is less than 7Å. Aromatic groups also have 



Srinivasan et al.        Curr. Appl. Sci. Technol. 2025 , Vol. 25 (No. 1), e0261080 
 
 

9 

the tendency to interact with other atoms and groups such as water, sulfur, and amino-
groups (Makhatadze & Privalov, 1992). 

From the investigations of surface solvent-exposed Tyr13/Tyr17 pairs indicated 
that the interaction energy between the two aromatic groups contributed only1.3 kcal/mol 
to protein stability (Hagedorn et al., 2010), which was only slightly higher than the 
stabilization expected from the hydrophobic contribution of burying the surface area 
between them. Therefore, it can be said that there was little apparent extra stabilization 
due to the presence of the aromatic pair.  
 
2.2.4 Hydrogen bonding 
 
The concept of the hydrogen bond was first introduced by Huggins around 1920 (Latimer 
& Rodebush, 1920). These bonds result from the interaction between an electronegative 
atom, covalently bound to hydrogen, and another electronegative atom. Hydrogen bonds 
are the bonds which have a distance of less than 3 Å between the H-donor and the H-
acceptor and have donor hydrogen-acceptor angle below 90o. Electrostatic interactions 
drive the formation of the hydrogen bond. These bonds play a very important role in holding 
the secondary structural elements together, binding with substrates, water molecules, etc. 
The strength of a hydrogen bond is 2-10 kcal/mol (Creighton, 1993). When a protein is 
unfolded, all the hydrogen bonding partners (potential) form bonds with water. But when 
the protein folds, these hydrogen bonds with water molecules are broken and the same 
bonding is formed with hydrogen bonding partners in protein chain. It is generally accepted 
that H-bonds make a positive contribution to protein stabilization (Pace et al., 1996).  

From an investigation conducted on tRNA synthetase with its substrates, it was 
concluded that hydrogen bonds give 1kcal mol-1 per hydrogen bond to the energetics of 
substrate binding. Various other investigations were in agreement with this conclusion 
(Pace et al., 1996).  

Studies involving the comparison of glyceraldehyde-3-phosphate dehydrogenase 
from four different organisms differing in their thermostability and with 50% identical in their 
sequences demonstrated a clear correlation between thermostability and the number of 
buried charged residues H-bonded to buried neutral residues (Tanner et al., 1996).  
 
2.2.5 Electrostatic interactions 
 
An ion-pair is formed when an interaction is established between the charged amino acids.  
The energy associated with this electrostatic interaction of an ion-pair is calculated using 
the Coulomb law: 

 
In the equation, Q1 and Q2 refer to the two charges, ε represents the dielectric 

constant associated with the medium, and R12 refers to the distance between the two 
charges. From the equation, it can be understood that the dielectric constant and distance 
components determine the magnitude of the effect of an ion-pair on the stability of the 
protein. The typical distance that exists between the two charges of an ion-pair is 4 Å. But 
it has been suggested that ion-pairs having distances between their charges of greater 
than 4 Å also significantly contribute to protein stability. Since entropy decreases and 

12

21

R
QQE

ε
=
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desolvation is affected when opposite charges are brought close together, investigators 
believe that these ion-pairs do not contribute to protein stability (Horovitz & Fersht, 1990).  
Various other studies carried out at high temperature concluded that the desolvation 
penalty decreases due to decrease in the dielectric constant of water. Hence, there is a 
decrease in the desolvation penalty if the dielectric difference is reduced between the 
protein and the solution (Horovitz & Fersht, 1990).   From the studies it can be concluded 
that these interactions play a small role in protein stability.  
 

3. Models to Explain Osmolyte Protein Interactions 
 
3.1 Experimental models   
 
3.1.1 Preferential interactions 
 
The arrangement of solutes or solvent molecules around a protein present in solution using 
thermodynamic measurements can be explained by the excluded volume or preferential 
interaction models developed by Timasheff (1998). The molar ratios of the water and solute 
determine the arrangement of these two components in the solution. However, when a 
protein is also added into the solution, the arrangement of the water and solute molecules 
changes around the protein molecule and is different from the arrangement existing in the 
bulk solution. This happens because water and solute interact with the protein molecule 
differently. If the solute interacts more with the protein, the phenomenon is called “solute 
binding”. In this case the number of water molecules near the protein surface will be 
decreased, so it is said there is not “preferential hydration” of protein. But in the opposite 
scenario, if more water interacts with protein compared to solute, the phenomenon is called 
“preferential hydration” of protein molecule or “preferential exclusion” of the solute 
(Timasheff, 1998) (see Figure 3).  

The preferential interaction parameter (∂m3/∂m2) T, μ1, μ3 is an important 
thermodynamic quantity that can be measured using equilibrium dialysis (Lee et al., 1979). 
Here, m2 and m3 represent the molal concentrations of protein (component 2) and solute 
(component 3), respectively, and the partial derivative represents the change in 
concentration of solute that takes place in the vicinity of the protein when a small increment 
of protein is added to solution. Component 1 refers to water, and the subscripts on the 
partial derivative mean the experimental measurement is conducted such that temperature 
(T) and chemical potentials of water (μ1) and solute (μ3) inside and outside the dialysis 
bag are constant. From the above description, it can be stated that the preferential binding 
and preferential exclusion of solute near the surface of the protein can either be less or 
greater when compared to the solute concentration in the bulk solution. If the value of this 
parameter is positive, it means “solute binding”. If it is negative, then it means “preferential 
exclusion” of solute (Bolen, 2004). Bolen (2004) demonstrated that all osmolytes have a 
negative value for this parameter. The negative value of this parameter for osmolytes is 
due to huge unfavorable interaction between the osmolytes and the peptide backbone 
(Hamaguchi & Kurono, 1963; Liu & Bolen, 1995), which causes stabilization of the native 
state of protein compared to unfolded state (Xie & Timasheff, 1997b; Timasheff, 2002a).  
 
3.1.2 Osmophobic effect 
 
Bolen and Baskakov (2001) proposed the osmophobic theory. The theory is based on the 
transfer free energy measurements of amino acid side chains and the protein backbone  
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Figure 3. The arrangement of solute or solvent molecules around the protein present in 

solution 
 
from water to osmolyte solution and asserts that the effect of osmolytes on the protein 
stability is due to a solvophobic thermodynamic force called the osmophobic effect. The 
osmophobic effect is a result of the unfavorable interaction of the osmolyte with the peptide 
backbone (Bolen & Baskakov, 2001). 

The osmophobic effect is best explained on the grounds that osmolytes do not bind 
to the proteins (both native and unfolded forms) (Lee & Timasheff, 1981; Arakawa et al., 
1990a). This implies to solvophobic interactions between the protein surface and the 
osmolyte leading to an increase in the Gibbs energy of the protein species (Gekko & 
Timasheff, 1981; Liu & Bolen, 1995; Wang & Bolen, 1997; Qu et al., 1998). In comparison 
to the native protein, the unfolded protein is more solvophobic for the osmolytes, 
demonstrating that proteins are more stable in the presence of osmolytes as compared to 
water alone (Liu & Bolen, 1995).  
 
3.1.3 Surface tension 
 
The surface tension phenomenon arises due to the different concentration ratios of small 
molecules near the surface of a protein and in the bulk solution. Gibbs analysis of surface 
phenomenon showed that (i) solutes which increase the surface tension of water are 
concentrated more in the bulk solution as compared to their concentration at the air/water 
interface and (ii) solutes that decrease the surface tension of water are concentrated more 
at the air/water interface than the bulk solution. Therefore, if a cavity which is of the size of 
a protein is introduced into the bulk solution, the solute that increases the surface tension 
of water will be preferentially excluded from near the surface of the cavity and the solutes 
that decrease the surface tension of water will be preferentially bound at the surface of 
cavity.  

The studies showing correlation between surface tension increments and the 
stability of different proteins led to the concept that different solutes affect proteins by 
causing the formation of empty spaces in the solute containing solution for accommodating 
native and unfolded proteins in those empty spaces, and this depended on the surface 
tension of the solution (Kita et al., 1994; Lin & Timasheff, 1996; Kaushik & Bhat, 1998; 
Kaushik & Bhat, 2003). Sharp et al. (1991) and Nicholls et al. (1991) hypothesized that this 
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phenomenon could be used to quantify the hydrophobic protein stability. These reports 
were in sync with reports showing that the surface tension of water is increased by the 
presence of sucrose and this increases thermal protein stability (Lee & Timasheff, 1981).  
But this is not the case with the other osmolytes (Kita et al., 1994). Urea also increases the 
surface tension of water and hence, proteins should be preferentially hydrated in the 
presence of urea, forcing them to fold according to surface tension theory. However, 
experiments show that urea preferentially binds to the native protein (Prakash et al., 1981), 
giving a result that is exactly opposite to what surface tension theory predicts. The failure 
of surface tension theory to correctly predict protein behavior in the presence of urea is 
similarly mirrored by its incorrect predictions of protein behavior in the presence of TMAO. 
TMAO was experimentally found to decrease the surface tension of water (Kita et al., 1994) 
and thus it is predicted that it should bind to proteins leading to destabilization of proteins. 
However, TMAO was found to force proteins to fold (Baskakov et al., 1998; Baskakov et 
al., 1999). Therefore, Auton et al. (2006) concluded that surface tension could not be the 
force solely responsible for these osmolyte-induced effects on proteins as its effects are 
greatly attenuated by one or more additional forces. It was also found that the measured 
preferential interactions of ArgHCl and LysHCl (Kita et al., 1994) with bovine serum albumin 
did not give a good correlation with the increase in surface tension. A similar lack of 
correlation was also found for MgCl2 (Arakawa et al., 1990b).  
 
3.2 Theoretical models  
 
3.2.1 Excluded volume model  
 
Excluded volume is the volume occupied by a solute molecule in a solvent and this space 
cannot be occupied by another molecule in the same solvent. It depends on two 
parameters of the solute molecule: shape and conformation. This concept was first 
designed by Paul John Flory, and Werner Kuhn coined this term in 1934. Suppose there 
were two identical non-flexible spheres placed in dilute solution, it was observed that the 
mid-point of these two spheres can only be placed close enough so that the distance 
remains twice as their radius. In simple words, a spherical molecule will exclude molecules 
like it to a distance eight times the space it occupies. But, during calculations, the distance 
is counted only twice, which become only four times greater than their physical volumes 
(Schachman & Lauffer, 1949; Timasheff, 1998; Schellman, 2003).  

This model explains well the preferential exclusion of PEGs from proteins 
(Arakawa & Timasheff, 1985; Bhat & Timasheff, 1992). Urea and guanidinium chloride 
have larger radii than a water molecule, and according to this model, they are expected to 
preferentially hydrate proteins for excluded volume reasons.  But it is known that urea and 
guanidinium chloride bind with the proteins in the native state and destabilize them 
(Arakawa & Timasheff, 1984; Timasheff, 1992). 
 
3.2.2 Scaled particle theory 
 
This is a convenient method for expression of the solvation (hydration) free energy of the 
rigid-sphere solute (Pierotti, 1965; Pierotti, 1976). This theory does not explain in detail the 
interactions among the solute particles in the solution or structure component of the 
solution. The free energy of solvation of a rigid-sphere solute is dependent on the solvent 
density ρ, pressure P, and temperature T of the system. A solvent molecule is modeled as 
a hard sphere with a properly chosen diameter (Reiss et al., 1959; Lebowitz et al., 1965; 
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Minton, 1983). Scaled particle theory predicts the free energy of solvation of a protein in 
terms of the work of forming a cavity in the solution large enough to accommodate the 
protein. 

The scaled particle theory (SPT) can be used to calculate the entropic component 
of the effect of carbohydrates on protein stability (Saunders et al., 2000; Davis-Searles et 
al., 2001). By subtracting the entropic contribution from the measured change in stability, 
the enthalpic contribution can be calculated (Saunders et al., 2000; Davis-Searles et al., 
2001).  SPT theory can explain the stabilizing effect of various polyols on the A-state of 
ferricytochrome c at low pH (Davis-Searles et al., 1998). The effect of sucrose and fructose 
on the thermal stability of RNase-A and α-lactalbumin are entropic in nature and can be 
accurately accounted for by SPT (O'Connor et al., 2004). The stability prediction by SPT 
changes because of the contribution that the osmolytes make to the entropy of solvation 
of the native and denatured states of proteins. SPT calculates preferential binding 
parameters in those cases where enthalpic interactions between the protein and the co-
solute are not important like in case of the effect of sucrose and fructose on the stability of 
RNase-A and α-lactalbumin (O'Connor et al, 2007). 
 
3.2.3 Kirkwood–Buff approach 
 
The solvation of the protein side chains in the presence of osmolytes was first 
demonstrated by Rosgen and coworkers (Harries & Rösgen, 2008; Rösgen, 2009). This 
approach was named Kirkwood-Buff theory, in which they calculated the osmolation of 
osmolyte and hydration of protein for all osmolytes. It was also determined that the 
hydration of side chains depends mostly on their size. The peptide backbone unit is 
hydrated to a variable extent in different osmolyte solutions. According to this approach, 
the osmolytes were categorized based on their solvation of the peptide unit. It was 
observed though that certain osmolytes (methylamines) demonstrated very little peptide 
unit hydration when the protein was transferred from water to 1 M methylamine solution, 
but the magnitude of osmolation was large with negative value. This indicated that 
methylamines were excluded from the peptide chain. A similar effect was found in the case 
of proline and polyol osmolytes with slight variation that water also was excluded from 
peptide vicinity. However, contrary to methylamines, amino acids and polyols, the 
saccharide osmolytes were found to interact with the peptide unit, causing the hydration of 
the peptide unit with no solvation of the saccharide osmolytes. This very aptly describes 
the weak interaction of denaturants, as exhibited by X-ray crystallography and NMR 
(Dunbar et al., 1997; Mattos & Ringe, 2001; Pierce et al., 2008). Urea displays the classical 
solvent exchange mechanism where its preferential interaction with the protein peptide 
chain excluded water (Auton et al., 2008). 
 
3.2.4 Molecular crowding approach 
 
The primary feature of macromolecular crowding is that all osmolytes occupy the same 
space at the same time with other molecules (Joshi & Kishore, 2022). This basically is the 
excluded volume model (Figure 4).  The repulsion between different molecules exists with 
disregard to any other type of interactions. This phenomenon is everlasting, and the 
organisms have adapted to it (Ellis, 2001; Minton, 2001). The hypothesis in which proteins 
as seen as hard spheres greatly emphasizes the effect of excluded volume on their 
thermodynamic and hydrodynamic properties (Zimmerman & Minton, 1993).  
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This phenomenon happens when we consider that a significant solution volume is 
filled with various other components, other than water alone.  All the processes that occur 
at high macromolecule concentrations (50-400 mg/mL), occupying up to 40 percent of 
medium volume, causes a decrease in the intracellular component volume in the cell 
(Fulton, 1982; Zimmerman & Trach, 1991; Ellis & Minton, 2003). This phenomenon is found 
in all living systems. The protein folding process involves passing through an unstable 
intermediate which can aggregate (Hartl & Hayer-Hartl, 2002). The crowding phenomenon 
in these cases leads to aggregate formation (Hartl & Hayer-Hartl, 2002; Hatters et al., 
2002). Crowding compounds are currently being employed in in vitro biochemical studies 
to mimic in vivo conditions (Hartl & Hayer-Hartl, 2002). This can help to understand how 
this phenomenon can influence a biochemical process. 

 
 

Figure 4. The effect of macromolecular crowding on the protein stability 
 

4. Conclusions 
 
From the above discussions we conclude that protein-osmolyte interactions involve the 
interplay of various forces. Among all the models discussed in the text above, the most 
convincing mechanism shows the preferential exclusion of osmolytes from the immediate 
vicinity of the protein domain and this preferential exclusion of osmolyte serves as the major 
driving force for osmolyte-induced stabilization of protein. This preferential exclusion of the 
osmolyte from the protein domain is the result of (i) solvophobic/osmophobic interaction 
between the osmolyte and the native (N) and denature (D) states of proteins, (ii) osmolytes 
that increase surface tension being preferentially excluded from the protein surface- the 
surface tension effect and (iii) excluded volume considerations.  
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