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Abstract 
 

Neural network is one of the most widely used method in autonomous 
driving. Current researchers use only steering angle to train artificial 
neural networks, ignoring the importance of acceleration and 
deceleration for autonomous vehicles. We used an intelligent driving 
platform built with the Raspberry Pi 4 Model B, a front wide-angle 
camera, and a 1:16 scale model car to achieve real-time acceleration and 
deceleration while performing road tracking. Existing models cannot 
learn steering angle and throttle values well. This research proposed a 
novel architecture CNN model (PBLM-CNN21) to achieve real-time 
acceleration and deceleration while achieving road tracking. The 
PBLM-CNN21 model can learn steering angle and throttle value. The 
training loss value of our proposed PBLM-CNN21 model was 35% 
lower than the current TDD model, and the stability of our proposed road 
tracking model was 82% greater than that of the current TDD model. 
Furthermore, we tested the impact of different hyper-parameters on 
training model loss and road tracking performance. In addition, we also 
tested the effectiveness of varying lighting conditions and speed ratios 
on road tracking performance. The PBLM-CNN21 model proved more 
robust than the existing TDD models. Moreover, the PBLM-CNN21 
model achieved road tracking under different lighting conditions and 
was more suitable for high-speed ratios. 
 

 
1. Introduction  
 
Autonomous driving is a critical task in automotive innovation technology and has become a 
research hotspot. Road tracking is the primary task of autonomous driving, and we implemented the 
autonomous driving task in a small-scale simulated car driving environment. The first step in the  
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road-tracking mission was to build an intelligent driving platform. There are three main components 
to be achieved in existing studies on autonomous driving cars using toy cars, such as Karni et al. [1] 
and Bae et al. [2]. Although studies based on toy cars are highly cost-effective, the differences 
between toy cars and real cars are too significant. Thus, toy cars can hardly replicate the actual 
driving situation. We proposed the use of a 1:16 model car to solve this problem. The steering and 
driving of the scale model car can replicate the driving system of an actual car to a certain extent. 
Then there is the section about sensors. Existing autonomous driving researches used multiple 
sensors. In the studies of Karni et al. [1] and Lee and Lam [3], the researchers used a combination 
of cameras and ultrasonic sensors. In the studies of Du et al. [4] and Zang et al. [5], a variety of 
cameras and lidar were employed. Although current works use multiple sensors, humans drive cars 
utilizing only sight and hearing. Therefore, it is essential to train an agent to achieve autonomous 
driving using fewer sensors. We proposed to use only one camera as the environment perception 
sensor to achieve road tracking. The computing platform is another vital component. The Arduino, 
Raspberry Pi, NVIDIA Jetson TX2 platforms can commonly be seen in the existing research. For 
example, in the study of Yuenyong and Jian [6], they used the Arduino computing platform. 
However, the computing power of Arduino is insufficient, and an additional computer is needed for 
calculation, so the self-driving car is not a standalone agent. In the studies of Do et al. [7] and Lee 
and Lam [3], they used an intelligent driving platform that combined the Raspberry Pi and Arduino 
platforms. However, the computation and execution of these two methods are separate and are not 
standalone agents. With the development of an embedded computing platform, Raspberry Pi is now 
fully capable of loading CNN models for control applications. We proposed using the latest version 
of the Raspberry Pi 4 Model B as a computing platform. 

When implementing road tracking, most researchers used a CNN model. In the study of 
Rausch et al. [8], they proposed a CNN model consisting of three convolutional layers, two pooling 
layers, and a fully-connected layer. Lin et al. [9] proposed a more complex CNN model consisting 
of five convolutional layers and four fully-connected layers. They experimented with simulated 
scenarios in a virtual environment of the computer, proving that their model could achieve road 
tracking. However, the computer-simulated virtual environment is different from the real 
environment, so more studies use a small-scale intelligent driving platform and a custom track to 
test road tracking. In the studies of Bechte et al. [10] and Do et al. [7], they used the same CNN 
model which consisted of five convolutional layers and four fully-connected layers. They 
successfully used this neural network to enable their small-scale intelligent driving platform to 
implement road tracking on their custom track. In all the above studies, research output was only 
concerned with steering angle. However, the steering angle and the speed significantly affect road 
tracking performance. Therefore, we add the throttle value (proportional value of speed) to the CNN 
model for learning to achieve real-time acceleration and deceleration while performing road 
tracking. 

Furthermore, we proposed a CNN model with a novel architecture based on a parameter-
based layer modification method to achieve road tracking and real-time acceleration and 
deceleration. After adjusting the network architecture of the model and the parameters of each layer, 
we proposed a novel architecture CNN model (PBLM-CNN21) to achieve road tracking. We 
employed Keras Linear and Keras Categorical as the base deep learning models in our proposed 
PBLM-CNN21 architecture.   
 One of the most commonly used neural networks in autonomous driving is the 
convolutional neural network. This research presents the critical layers of Convolutional Neural 
Networks. At the same time, we also analyzed and summarized the neural network models and 
experimental results in existing autonomous driving research. Finally, we introduce an end-to-end 
approach to autonomous driving and propose a novel method to achieve and improve road tracking 
performance. 
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 Since the development of deep learning, many neural networks have been proposed. We 
can regard the neural network as a black box in which we can fit arbitrary functions. We can get the 
desired Y when a specific X is given as long as we have enough training data. The architecture 
diagram is shown in Figure 1. 
 

 
Figure 1. Neural network architecture diagram 

 
A neural network commonly used in autonomous driving is the Convolutional Neural 

Network [11]. Convolutional Neural Networks (ConvNets or CNNs) are derivatives of the 
Multilayer Perception (MLP). They were developed from the research of the physicists Hubert and 
Wiesel on the visual cortex of cats. The architecture of the visible cortex cells is very complicated, 
and these cells can keenly perceive the input picture's sub-regions. The CNN model can be widely 
used in its local connection and weight sharing method. First, CNN reduces the number of weights 
to make the network easy to optimize. Second, it reduces the complexity of the model and reduces 
the risk of over-fitting. Finally, when the input of the network is an image, the effect is more 
pronounced. 

CNN can directly use images as input, avoiding the feature extraction and data 
reconstruction needed in traditional recognition algorithms. In the process of two-dimensional 
image processing, a neural network can extract the color, texture, shape, and other image features 
by itself. Automatic feature extraction gives CNNs significant advantages in processing two-
dimensional images and improving computational efficiency. CNNs are deep neural networks with 
convolutional structures and multi-layer supervised learning neural networks. The central network 
architecture of CNN includes convolutional layers, pooling layer, and fully-connected layer. 
 The convolutional layer [12] mainly comprises filters and convolved features. The term 
‘convolution’ comes from the matrix convolution operation it performs. We can see the specific 
execution process of the convolution operation in Figure 2. For example, suppose we need to process 
a gray-scale image size 6 × 6 pixels, and a 4 × 4 matrix is also generated. Then, we only need to 
multiply and sum the elements corresponding to the two orange regions in Figure 2 to get the output 
result. According to this method, let the 4 × 4 matrix sweep the entire gray-scale image, and finally, 
a 3 × 3 matrix can be obtained. The calculation results are shown in Figure 2. In CNN, we use the  
4 × 4 matrix as a filter, and the resulting 3 × 3 matrix is called the Convolved Feature, and the size 
of each pixel moved is called the stride. In actual training, CNN will automatically adjust the filter 
matrix through learning. Thus, the extracted features will increase as the number of filters increases. 
 Pooling is also called Spatial Pooling [13]. Its primary function is to condense the 
convolution feature matrix to reduce the dimensionality of the feature space while retaining critical 
information. The most common pooling methods are maximum pooling and average pooling [14]. 
The method uses the maximum value of the fundamental input part for maximum pooling, and it 
produces a calculation example, as seen in Figure 3. The method then uses the average value of the 
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fundamental input part for average pooling, and generates a calculation example, as seen in Figure 
3. The convolutional features obtained by using the maximum pooling method are relatively better. 

 

 
 

Figure 2. The result of the convolution operation 
 
  

 
 

Figure 3. The calculation example of max-pooling and average pooling  
 
 The fully-connected (FC) layer [15] usually uses a multi-layer perceptual neural network, 
and its primary function is to classify the input image using the convolutional features extracted by 
the convolutional layer and the pooling layer. In an FC layer, the output of the last convolutional 
layer is usually flat and connects each node of the current layer with the node of the next layer. Thus, 
all neurons between the two layers have weights to reconnect, and the FC layer is at the tail of the 
convolutional neural network. 

CNN is a deep learning algorithm. First, compared with other algorithms, CNN requires 
much less preprocessing. Second, it shares the convolution filter and has powerful processing 
capabilities for high-dimensional data. Third, CNN does not need to manually extract features, as 
good classification results can only be achieved with training weights. 
 In the early days of research, it was not possible to rely on a single camera for environment 
perception. Zang et al. [5] used a car with a camera, a global positioning system (GPS), and an 
intelligent RP lidar (RP lidar is a lidar that can scan 360 degrees). The driving platform actualizes 
the task of autonomous driving. In the studies of Karni et al. [1], Lee and Lam [3], Du et al. [4], and 
Zang et al. [5], sensors with more than one camera were used. A multi-sensor driving platform is 
not a standalone agent, and it makes sense to use fewer sensors for road tracking. The initial study 
used Arduino as the computing platform, but its computing power was limited. In the study of 
Yuenyong and Jian [6], Arduino was used as the computing platform, but its computing power was 
limited. In their study, it was necessary to connect Arduino and computer using Bluetooth. The 
computer calculated the results and sent instructions to Arduino, and then Arduino controlled the 
car. Thus, the whole intelligent platform was not a standalone agent. The above problems were 
solved by Do et al. [7] and Lee and Lam [3]. They used two computing platforms, Raspberry Pi and 
Arduino. Raspberry Pi was used to calculate and issue control commands, while Arduino received 
commands to control the car. Although such an intelligent driving platform appeared to be 
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independent, its computing and control sections were still separated, and the system was still not 
standalone. They use multiple computing platforms because of the lack of computing power. 
However, Bechtel et al. [10] compared the performance of Raspberry Pi 3 B, Intel UP, and NVIDIA 
Jetson TX2 on deep learning tasks. The results show that if deep learning was required on a 
computing platform, only the NVIDIA Jetson TX2 could be implemented, and the NVIDIA Jetson 
TX2 was not recommended for deep learning because the training data they could afford was too 
small and the training efficiency was low. The current autonomous driving research mainly adopts 
an end-to-end control method, and the entire training process is completed on other computers with 
more powerful computing power. Even though they cost about the same as Raspberry Pi 3 B, 
existing embedded computing platforms are sufficient to support real-time control applications 
based on CNN models. Furthermore, the more powerful Raspberry Pi 4 Model B has also been 
released, and as the price is not high, the Raspberry Pi 4 Model B is the better choice for a computing 
platform. 

Behavioral learning is now most commonly used in self-driving cars. Its working principle 
is to learn the mapping relationship between the first-view image of the car and the steering angle 
through a neural network. Existing CNN models can already implement behavior learning well. 
Rausch et al. [8] and Lin et al. [9] proposed two CNN models, which could achieve the road tracking 
task in the simulation environment, but the simulation environment ignored the noise of the real 
environment, so the testing in the real environment was necessary. In the study of Bechte et al. [10] 
and Do et al. [7], they used a CNN model of the same network architecture and intelligent driving 
platform to achieve road tracking on their custom track. We summarized the models from the above 
studies in Table 1. We found that various CNN models could be trained. The input of the neural 
network model is all pictures, and the difference is the size of the input picture. The output section 
is the steering angle. However, genuinely autonomous driving is not a car driving at a constant 
speed. It makes sense to add throttle value to the model training section. We recorded the 
corresponding throttle values while collecting the data and training the proposed novel architecture 
CNN model (PBLM-CNN21) together with the steering angle. Then, the intelligent driving platform 
was able to achieve real-time acceleration and deceleration while performing road tracking. 
 The end-to-end control method [8, 16] is a typical vision-based automatic driving method. 
In the entire field of autonomous driving, the end-to-end approach means that cars collect signals 
directly through sensors. These signals include pedestrians, obstacles, signal lights, which are then 
uniformly input into the neural network system. Output instructions are closely related to control so 
that the car can proceed to the next step. As early as 1989, Pomerleau used neural networks to predict 
steering commands based on input simulated road images. In 2016, Nvidia disclosed its end-to-end 
deep learning technology for self-driving cars. It trained a CNN to directly map the raw pixels of a 
single front camera to steering commands. The end-to-end control system can optimize all 
processing steps, so it has a wide range of applications, covering ordinary lanes, highways, and 
forks. 

After the CNN processes the visual information through the convolutional layer, it will 
give a steering angle based on the previous learning experience through the FC layer. Under the 
framework of end-to-end autonomous driving, sufficient training data needs to be provided for the 
CNN to be fully trained. The way to collect the data is to allow the car with a camera to drive in the 
environment where it needs to be driven and get the first-view pictures taken during the driving 
process with the corresponding throttle value. The end-to-end controlled automatic driving system 
is shown in Figure 4. 

The end-to-end driving method based on deep learning operates in a way that is similar to 
human thinking. The process of humans driving a car is also a process of accumulation of 
experience. Vision and hearing are equivalent to sensors, the brain is equivalent to the decision-
making unit, and the hands and feet are equivalent to the execution unit. If the data obtained by these 
three units is correct, the driving process will become smooth and safe. If the sensor has the correct 
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input in automatic driving, the computer can train a good decision-making model, and the actuator 
will have the corresponding corrective action. 

 
Table 1. Existing research related to road tracking 

Network Reference Network architecture Parameters Experiment 

6-layer CNN [8]  

Input (100 × 190 × 3) 
Conv1 (20, 2 × 2) 
Pooling (5 × 5) 
Conv2 (48, 2 × 2) 
Pooling (2 × 2) 
Conv3 (64, 3 × 3) 
FC (500) 
Output steering angle 

1183K 

Virtual 
simulation (no 

intelligent 
driving platform) 

9-layer CNN 

[9]  

Input (66 × 208 × 3) 
Conv1 (3, 5 × 5) 
Conv2 (24, 5 × 5) 
Conv3 (36, 5 × 5) 
Conv4 (48, 3 × 3) 
Conv5 (64, 3 × 3) 
FC1 (100) 
FC2 (50) 
FC3 (10) 
FC4 (1) 
Output steering angle 

1060K 

Virtual 
simulation (no 

intelligent 
driving platform) 

[10]  

Input (66 × 200 × 3) 
Conv1 (24, 5 × 5) 
Conv2 (36, 5 × 5) 
Conv3 (48, 5 × 5) 
Conv4 (64, 3 × 3) 
Conv5 (64, 3 × 3) 
FC1 (1152) 
FC2 (100) 
FC3 (50) 
FC4 (10) 
Output steering angle 

250K 

Road tracking on 
custom runways 
using a small-
scale intelligent 
driving platform 

[7]  

Input (120 × 160 × 3) 
Conv1 (24, 5 × 5) 
Conv2 (36, 5 × 5) 
Conv3 (48, 5 × 5) 
Conv4 (64, 3 × 3) 
Conv5 (64, 3 × 3) 
FC1 (1152) 
FC2 (100) 
FC3 (50) 
FC4 (15) 
Output steering angle 

260K 

Road tracking on 
custom runways 
using a small-
scale intelligent 
driving platform 
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Description: input (height × width × depth format), taking Conv1 (24, 5 × 5) as an example, Conv 
means convolutional layer, 24 is the number of filters, 5 × 5 is the size of the filter, taking FC1 (500) 
as an example, FC means fully-connected layer, 500 is the number of neurons in the fully-connected 
layer. 
 

Camera CNN
Steering angle and speed 

calculated by neural 
network  

 
Figure 4. End-to-end controlled automatic driving system 

 
A car with multiple sensors is not a standalone agent because humans drive primarily 

through sight and hearing. Thus, implementing an agent with fewer sensors will significantly 
improve the intelligence of the trained model. Therefore, we proposed to build an intelligent driving 
platform on a scale model car, using only one camera and the Raspberry Pi 4 Model B computing 
platform. We also needed to set up a simulated tracking environment where data collection and 
model testing could occur. Existing models could not handle steering angle and throttle values well, 
so we proposed a novel architecture CNN model (PBLM-CNN21) with six convolutional layers, 
four FC layers, one max-pooling layer, and ten dropout layers to learn steering angle and throttle 
values. The PBLM-CNN21 model achieved real-time acceleration and deceleration while 
performing road tracking. In addition, we conducted noise tests on the lighting source of the 
experimental environment and tested the road tracking performance of the model under different 
speed ratios. 
 
 
2. Methodology  
 
This research proposed a CNN model with a novel architecture based on a parameter-based layer 
modification method CNN model (PBLM-CNN21). We also added the throttle value to the input of 
the model and make the model train both the steering angle and the throttle value to achieve real-
time acceleration and deceleration while performing road tracking. A detailed flow chart of the 
proposed model is shown in Figure 5. 
 

Input Data

Image 120 × 160 × 3

Steering angle
+

 Throttle value 

Model Training (PBLM-CNN21 Model)

Layer1, 2 Layer3, 4 Layer5, 6 Layer7, 8 Layer9, 10

Filter number 24
Filter size 5 × 5

Strides 2 × 2

Filter number 32
Filter size 5 × 5

Strides 2 × 2

Filter number 48
Filter size 5 × 5

Strides 2 × 2

Filter number 64
Filter size 3 × 3

Strides 1 × 1

Filter number 64
Filter size 3 × 3

Strides 1 × 1

Filter number 128
Filter size 3 × 3

Strides 1 × 1

Layer11, 12, 13

Output

Steering angle

Throttle value

Newly added 
training value 
Throttle value 

Two outputs, which can control both 
direction and real-time acceleration 

and deceleration.
Convolutional layer Dropout layer MaxPooling layer

Road Tracking

Conv layer
D

ropout layer
× 6

FC layer
D

ropout layer
× 4 

Steering 
angle

Throttle 
value

Image Direction

Real-time acceleration 
and deceleration.

FC1 Drp1

400 neurons

FC2 Drp2

300 neurons

FC3 Drp3

200 neurons

FC4 Drp4

100 neurons

Fully-connected layer Dropout layer

PBLM-CNN21

M
axPooling 
layer × 1

 
 

Figure 5. An overview of the proposed novel architecture PBLM-CNN21 model for road tracking 
and the road tracking process where the PBLM-CNN21 model implements dual-parameter control 

of steering angle and throttle value 
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As shown in Figure 5, we added the throttle value to the training input for training in the 
input and output module. In the neural network mechanism module, our proposed model has twenty-
one layers. Compared with the base model, one convolutional layer, two FC layers, one max-pooling 
layer, and ten dropout layers were added. 
 
2.1 Hardware for constructing the intelligent driving platform 
 
The hardware connection diagram of the intelligent driving platform is shown in Figure 6. As shown 
in Figure 6, the wiring distribution of each critical hardware can be seen. 
 

Raspberry 
Pi

Servo 
Driver 

PCA9685

Servo
(Control 
steering)

ESC
(Control 
speed)

Motor

Power B

Pi Camera

Wi-Fi

Power A

Wheel A

Wheel B

Wheel C

Wheel D

 
 

Figure 6. The hardware architecture diagram of the intelligent driving platform 
 
2.1.1 Raspberry Pi 4 model B 
 
Raspberry Pi [8] has always been very popular in the embedded development world. It is a cost-
effective and small programmable microcomputer. In June 2019, Raspberry Pi officially launched 
the Raspberry Pi 4 Model B [3, 17]. It was a comprehensive upgrade of the Raspberry Pi, with 
soaring performance and rich accessories, supporting 4K dual screens and more extensive storage. 
The picture of Raspberry Pi 4 Model B is shown in Figure 7. 
 

 
 

Figure 7. Raspberry Pi 4 Model B [3, 17] and detailed parameter list 
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The Raspberry Pi 4 Model B uses a quad-core 64-bit ARM CortexA72 CPU, and the model 
is Broadcom BCM2711 SoC. The primary frequency is up to 1.5GHz, contains two USB 2 ports, 
two USB 3 ports, and is powered by a USB-C port. In addition, it has a Gigabit Ethernet interface 
and a headphone jack, two micro-HDMI ports, and supports two 4K displays. The detailed 
parameters of Raspberry Pi 4 Model B are shown in Figure 7. 

Raspbian is an open-source operating system that can run on the Raspberry Pi. This system 
is an operating system based on the Linux version of Debian so that Linux-based programming can 
run on the Raspberry Pi platform. The computational power of Raspberry Pi 4 Model B for 
processing machine learning tasks is more than four times that of Raspberry Pi 3B+ [18, 19]. 
 
2.1.2 Wild-angel camera 
 
As the only environmental perception sensor, the choice of camera is essential. First, we needed to 
determine the size of the input image. In the existing research, the image of 120 × 160 pixels is the 
most considerable input, which means that more information could be obtained. Considering that 
the intelligent driving platform could obtain more information, we needed a camera with a broader 
viewing angle. We chose to use a wide-angle camera with 5M pixels. The diagonal field of view of 
this camera is 160°, the maximum static picture resolution that can be obtained is 2592 × 1944 pixels, 
the size of the entire camera is 25 mm × 24 mm × 17mm (length × width × height). 

When designing the position of the camera on the intelligent driving platform, considering 
that the human driving perspective was forward-looking, we put the camera in the front. At the same 
time, considering that the change of camera position might cause unnecessary noise to the CNN 
model, we decided to fix the camera position. After experimentation, as shown in Figure 8 (a), we 
ensured that the map occupied 70% of the entire image. We also measured the angle α between the 
camera and the floor to be 35°, as shown in Figure 8 (b). 

 

 
 

Figure 8. (a) Live view of the front camera, (b) Schematic diagram of the angle between the 
camera and the floor 

 
2.1.3 Building an intelligent driving platform 
 
Using a scale model car with independent computational power is a good choice. Donkey Car [20, 
21] is an accessible open-source autonomous remote control model car project for learning the 
practical application of deep learning and computer vision in robotic vehicles. It does not take long 
to set up and get started. We used its existing neural network computer vision library to achieve 
road tracking. The hardware needed to assemble the RC car is shown in Figure 9. 
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Figure 9. Assembled intelligent driving platform and required hardware 
 

After preparing the accessories in Figure 9, we assembled the intelligent driving platform. 
The assembled intelligent driving platform size was 251 mm × 216 mm × 174 mm (length × width 
× height). The assembled intelligent driving platform is shown in Figure 9. The Ni-MH SC battery 
is used as Power A and the USB battery is used as Power B, as shown in Figure 6. 
 
2.2 Scenarios for simulation tracking 
 
2.2.1 Custom track  
 
The establishment of a custom track is mainly used for data collection and model testing of the road 
tracking experiment. Therefore, the custom track uses white as the inner and outer boundaries, and 
we added a yellow line in the middle of the track. The size of the entire track was 3 m × 6 m, and 
the lane width was 25 cm. The design drawing is shown in Figure 10. 
 

 
 

Figure 10. Track design drawing and the completed custom track 
 

Because of COVID-19, we could only conduct experiments at home. To reduce the noise 
of the experiment, we built a custom track on a tarpaulin. One problem with tarpaulins is that they 
reflect light. Under the lighting conditions of a window-opened room, we took an overview of the 
entire map from two different locations and recorded camera images of the intelligent driving 
platform at the corresponding locations. As shown in Figure 11, a section of the road could not be 
seen clearly. We set the lighting situation and room conditions to solve the above problems. 
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Figure 11. An overview of the actual map and camera images on the driving platform at the 
corresponding location in the lighting conditions of a window-opened room. The positions of (a) 

and (b) are the same, and the positions of (c) and (d) are the same. 
 

2.2.2 Lighting and room condition 
 
We solved the reflection problem of the tarpaulin by the following methods. We drew the curtains 
in the room, closed the door, and used the two lamps on the ceiling as lighting sources. This ensured 
that the environment used throughout the experiment was consistent so that if problems arose during 
the study, the problems brought about by the experimental environment could be minimized. After 
the setup was complete, we also captured the map overview and images from the intelligent driving 
platform camera at the corresponding location from two angles. As shown in Figure 12, we can see 
that the problem of reflection was solved very well. 
 

 
 

Figure 12. (a) An overview of the actual captured custom track and camera images on the driving 
platform at the corresponding location under the lighting conditions of a window-closed room, (b) 

A simulated tracking scene with lighting and room setup complete 
 
2.3 Parameter based layer modified CNN model 
 
When designing the new model architecture, we modified the number of layers of the model and 
the parameters of each layer. The experiment was found that reducing the number of model layers 
reduced the loss value, but road tracking did not improve. It was necessary to deepen the depth of 
the model. We chose to add one convolutional layer and two FC layers. As the depth of the model 
increased, so did the number of parameters that were trained. We added a dropout layer after each 
layer to prevent overfitting during training. At the same time, although the position of the camera 
was fixed, the car may be unstable due to acceleration and deceleration during driving, so we added 
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a max-pooling layer between the convolutional layers and the FC layers. After choosing an 
appropriate network architecture, we optimized the model by modifying the number of filters, filter 
size, and stride. Finally, we proposed a novel parameter-based layer-modified CNN model with six 
convolutional layers, four FC layers, ten dropout layers, and one max-pooling layer. This novel 
architecture parameter-based layer modification model had 21 layers, naming the model PBLM-
CNN21. The PBLM-CNN21 model is able to learn the steering angle and throttle value well, thus 
realizing real-time acceleration and deceleration during road tracking. 
 
2.4 Methods for evaluating the proposed model 
 
The quality of a model was assessed in two parts. Firstly, the loss value from model training. The 
training loss value can reflect the quality of the model architecture to a certain extent. Secondly, the 
actual road tracking performance. We found that existing models performed poorly in handling 
steering angle and throttle values in road tracking, so we proposed a novel architecture, the PBLM-
CNN21 model. The PBLM-CNN21 model can better achieve real-time acceleration and 
deceleration while performing road tracking by learning the steering angle and throttle values. 
 
2.5 Experimental setup 
 
The primary goal of the experiment was to train a model that could conduct automatic driving using 
an intelligent driving platform so that the car can achieve road tracking. Thus, we divided the process 
into data collection, model training, and model testing. The practical steps diagram is shown in 
Figure 13. 
 

1. Data Collection

2. Model Training

3. Model Testing

5000 / 10000 / 15000 / 20000

KL / KC / PBLM-CNN21

Different lighting conditions / Different speed ratios
 

 
Figure 13. The experimental steps diagram 

 
2.5.1 Data collection 
 
The first step in this experiment is data collection. The quality of the training dataset will directly 
affect the quality of deep learning. Therefore, we needed to collect data by driving an intelligent 
driving platform on a custom track in the lighting conditions of a window-closed room. The steps 
for data collection are shown in Figure 14. 
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Load Pi Camera and  handle control 
section

Use the Bluetooth controller to 
drive the car

Save the picture, steering angle value and throttle 
value to the folder

 
 

Figure 14. Data collection steps 
 

After setting the Raspberry Pi system, we set the camera resolution to 120×160 pixels and 
the frame rate to 30fps through Open-Source Computer Vision Library (OpenCV, a cross-platform 
computer vision library). We could see the live preview of the camera in the web server, as shown 
in Figure 15. The method used for data collection was to drive the intelligent driving platform on a 
custom track with a bluetooth gamepad. When collecting data, if the output of the throttle value 
signal was detected, it would automatically start recording data, and if the throttle signal was lost, it 
would automatically stop recording data. After collecting the corresponding data, the collected data 
set was automatically saved to the corresponding new folder. 

The collected data was saved in the corresponding folder. This folder mainly contained 
three types of files. Figure 16 shows an example of the collected data set. Taking the picture framed 
in red in Figure 16 as an example, an explanation of the files follows: 

“1_cam-image_array_.jpg”: This is the picture information file. It is the first-view picture 
of the custom track taken while driving, and the picture size is 160 × 120 pixels.  

“meta.json”: This is the information record file, a necessary file for deep learning.  
“record_1.json”: This is the information record file. The record_1.json file corresponds to 

the 1_cam-image_array_.jpg file with the same serial number. This file records the throttle value 
and steering angle information under the picture 1_cam-image_array_.jpg. 

 

 
 

Figure 15. A web server can control the intelligent driving platform, and we can see the real-time 
web preview of the camera (We can now control your car from a web browser at the URL: < 

hostname.local of your car>:8887) 
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Figure 16. Example of the contents of the data set folder 
 

In this experiment, we chose four different numbers of datasets for training. They were 
5,000 pictures, 10,000 pictures, 15,000 pictures, and 20,000 pictures. To ensure the uniformity of 
the data, we collected 20,000 photos at a time, and then we took as many datasets as we needed 
from these 20,000 photos. 
 
2.5.2 Model training 

 
The second step was model training, which was very important. For this part, we used the model 
defined by the Keras high-level API. Keras and TensorFlow backend can be used together for deep 
learning. The model training part aimed to use a trained artificial neural network to reproduce the 
steering and throttle of the image seen by a camera. Considering the limited computational power 
of the Raspberry Pi, the Keras Linear and Keras Categorical models that performed well in a limited 
computational environment performed deep learning. The Keras Linear, Keras Categorical, and 
PBLM-CNN21 models are described in Table 2. 
 
Table 2. Description of neural network models 

Neural Network Model Network architecture 

Keras Linear 5 Conv2D layers 
2 FC layers 

Keras Categorical 5 Conv2D layers 
2 FC layers 

PBLM-CNN21 

6 Conv2D layers 
1 Max-Pooling layer 
4 FC layers 
10 Dropout layer 

 
Keras Linear (KL) uses a neuron to output a constant value through the Keras Dense layer 

with linear activation. Thus, the steering and throttle have a value, and there is no limit to the output. 
We defined this model as a Keras Linear model containing five convolutional layers and two FC 
layers.  

Keras Categorical (KC) decomposes steering and throttle decisions into cautious angles 
and then uses classification cross-entropy to train the network to activate a single neuron for each 
steering and throttle selection. Therefore, there are boundaries between input and output. We defined 
this model as a Keras Categorical model containing five convolutional layers and two FC layers. 

PBLM-CNN21 was our proposed novel architecture CNN model. The PBLM-CNN21 
model is a 21-layer neural network.  To the basic CNN models, one convolutional layer and two FC 
layers, one max-pooling layer, and ten dropout layers were added, and the parameters in the model 
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were also adjusted. The PBLM-CNN21 model thus became more suitable for processing data with 
steering angle and throttle value. 

For deep learning, we needed to configure the training environment on the computer. After 
completing the environment configuration, we were able to start model training. The detailed steps 
of model training are shown in Figure 17. 
 

Define the neural network 
model

Load data set and divided 
into training set and test 

set
Start training Save model

 
 

Figure 17. Model training steps 
 

During model training, we divided the dataset into two parts, one was the training set, and 
the other was the test set. The split ratio depended on the amount of data. If the amount of dataset 
was large, we used a ratio of 9: 1 to split the dataset, and when the amount of data was small, we 
used a ratio of 8: 2 to split the dataset. 

We selected two models, four datasets, and three different batch sizes for training in the 
model training section. The model training setup is shown in Table 3. During the model training 
process, we recorded the loss value and epoch. 
 
Table 3. Model training setup 

Neural Network Datasets Batch size 

Keras Linear 
Keras Categorical 

PBLM-CNN21 

5,000 
64 

128 
256 

10,000 
15,000 
20,000 

 
2.5.3 Model testing 
 
The model files were trained with different neural networks under different datasets, batch sizes 
were generated in the model training part, and the training loss value was also obtained. However, 
we could not judge the quality of the model based on the training loss value alone. So next, we 
started the last step of the experiment, loaded the trained models onto the intelligent driving 
platform, and tested models on the custom track. The entire test environment was the same as when 
the data was collected. The testing was carried out in an enclosed room, conducted both at day and 
night, and done with two lamps as lighting sources. This setup minimized possible noise in the 
environment. 

We used VNC to remotely connect to the Raspberry Pi and load our trained model and 
camera in the model testing. The model calculated the picture obtained from the camera output, the 
steering angle, and the throttle value to achieve real-time acceleration and deceleration while 
implementing road tracking. Firstly, we tested whether the different models could achieve real-time 
acceleration and deceleration while performing road tracking. At the same time, to test the influence 
of lighting conditions on the road tracking performance of the model, we chose to test under the 
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lighting conditions of a window-opened room and a window-closed room. Although the model 
could achieve real-time acceleration and deceleration, the speed used to collect data was relatively 
slow. It was necessary to test the performance of road tracking under different speed ratios. The 
difference between the speed ratio and the acceleration and deceleration was that the speed ratio 
limited the maximum driving speed of the intelligent driving platform. In contrast, acceleration and 
deceleration adjusted the throttle ratio during the driving process. We changed the maximum speed 
of the intelligent driving platform to test the effectiveness of road tracking under different speed 
ratios. We found that when the speed ratio is lower than 80%, the intelligent driving platform could 
not move, so we chose different speed ratios of 80%, 90%, and 100%. We called these three ratios 
of the vehicle speed: slow, normal, and fast, respectively. In order to analyze the impact of the speed 
ratio on road tracking, we recorded the number of times the intelligent driving platform touched the 
white line during the road tracking process of each model in the experiment. An example of the 
partial model road tracking process is shown in Figure 18. 

 

 
 

Figure 18. (a) Keras Categorical model road tracking (The red boxes in the diagram show that the 
car is touching the white line in road tracking It means that the road tracking of the Keras 

Categorical model was not good), (b) Keras Linear model road tracking, (c) PBLM-CNN21 model 
road tracking 

 
 
3. Results and Discussion 

 
In this chapter, we selected one of the state-of-the-art automatic driving models for comparison, and 
this model was proposed by Truong-Dong Do et al. [7]. This model is hereby after called as TDD 
model. We compared the performance of four models, the KL, KC, PBLM-CNN21, and TDD 
models in the version of model training and actual road tracking. We divided the experimental 
results into two sections for discussion. Firstly, the training loss values of different models and the 
impact of different hyper-parameters on model training loss were discussed. Secondly, the actual 
road tracking performance after loading the trained model onto the intelligent driving platform and 
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the effects of different hyper-parameters, lighting conditions, and speed ratios on actual road 
tracking performance were discussed. 
 
3.1 Analysis of loss values and related hyper-parameters obtained from model 
training 
 
3.1.1 The influence of different neural network models on training loss 
 
In the initial stage of the experiment, we used 15,000 photos to train the model. The model training 
loss is shown in Table 4. 

As shown in Table 4, we found that the loss of the PBLM-CNN21 model was smaller than 
other models. The PBLM-CNN21 model was trained with more parameters, but the generated model 
file was smaller than the TDD model. Furthermore, the model architecture was better. The training 
loss value of our proposed PBLM-CNN21 model was 75% lower than that of existing TDD models. 
 
Table 4. Model training loss and model size 

Model Training Loss Trained Parameters Size 
KL 0.084306 817,028 3.15M 
KC 0.186804 268,311 1.06M 

PBLM-CNN21 0.054834 857,954 3.33M 
TDD 0.222084 267,323 6.13M 

 
3.1.2 The influence of the different number of data sets on training loss 
 
We analyzed the effect of four datasets on training loss when the batch size was 128. The training 
loss comparison chart obtained by training under different datasets is shown in Figure 19. 
 

 
 

Figure 19. Training loss values under different data sets 
 

As shown in Figure 19, the training loss value did not change linearly with increase in the 
number of data sets. Proportionally, when the data set was 5,000, the training loss value was 
relatively high, and when the data set was 15,000, the training loss value was relatively low. More 
sensitive to the data set was the TDD model. The data set has minimal impact on the PBLM-CNN21 
model. 
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3.1.3 The influence of different batch sizes on training loss 
 
Batch size is an essential parameter in machine learning. It is the number of samples selected by the 
computer each training time. In the experiment, we chose to train the model under three batch sizes 
of 64, 128, and 256, and then analyzed the influence of batch size on the training loss value. The 
comparison chart of the training loss value under different batch sizes is shown in Figure 20. As 
shown in Figure 20, batch size had little effect on the training loss value of a single model. 
 

 
 

Figure 20. Training loss values under different batch sizes 
 
3.1.4 The influence of epoch 
 
Epoch refers to the number of times to train all data. We dedicated this research to find the minimum 
loss value and most efficient epoch. We used early stopping in model training. When the training 
loss was no longer decreasing, we performed five more training sessions. If the training loss did not 
drop after five training sessions, the training automatically stopped. We compared the epochs at the 
end of the different models, as shown in Figure 21. 
 

 
 

Figure 21. The early stop epoch of different neural network models (Example: B_64_D_5000 
format, where B is batch size and D is Data sets.) 

 
As shown in Figure 21, we found that the TDD model was trained with fewer epochs than 

the other models. Under different hyper-parameters, the epochs performed were relatively less when 
the batch size was 64 and the data set was 15,000. The highest number of epochs was 53, and the 
upper training limit was 53, ensuring the highest efficiency and negligible epoch training loss. 
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3.1.5 Summarizing the training loss of the model trained under different hyperparameters 
 
The loss of the model trained under different batch sizes and different data sets is shown in Figure 
22. We found that the training loss of the KL model and the PBLM-CNN21 model did not change 
much under different hyper-parameters. The loss value of the KC model and TDD model changed 
significantly after the number of data increased. It showed that the KL model and the PBLM-CNN21 
model were more suitable neural network models for calculating the two parameters of steering 
angle and throttle value.  
 

 
 

Figure 22. Comparison of loss values for training models under different hyper-parameters 
 
3.2 Test models with the intelligent driving platform 
 
It is not accurate to judge the quality of a model based on the training loss value. After loading the 
neural network models into the intelligent driving platform, we needed to further evaluate the quality 
of the neural network model according to the actual road tracking performance. We loaded the model 
trained under different hyperparameters onto the intelligent driving platform to see how its road 
tracking worked. In the experiment, we loaded different neural network models onto the intelligent 
driving platform, and each neural network model was tested on the custom track for ten laps. We 
record the number of times the intelligent driving platform touches the white line (failures of road 
tracking). Next, we evaluated the quality of the model by taking the average of the failures of road 
tracking (AF= average failures). Furthermore, we test the effectiveness of lighting source and speed 
ratios when conducting road tracking. 
 
3.2.1 Road tracking performance of different models trained with different hyper-parameters 
 
Experiments show that the KL, KC, and PBLM-CNN21 models achieved real-time acceleration and 
deceleration while achieving road tracking. The TDD model could only achieve road tracking and 
could not simultaneously accelerate and decelerate. We recorded the AF of the intelligent driving 
platform under different parameters in Table 5. The AF of the model under different batch sizes and 
data sets is shown in Figure 23. 

As shown in Figure 23 (a), batch size had little influence on road tracking. Figure 23 (b) 
shows that the number of datasets had a more significant impact on road tracking performance. As 
shown in Table 5, when the batch size was 128, and the data set was 10,000, the best road tracking 
performance was provided by the PBLM-CNN21 model. The AF of the PBLM-CNN21 model was 
82% less than that of the TDD model. 
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Table 5. The AF of models trained with different hyper-parameters 

Datasets Batch size AF-KL AF-KC AF-PBLM-CNN21 AF- TDD 

5000 
64 1.5 4.3 0.8 5.4 

128 1.3 3.3 0.9 3.8 
256 1.9 4.7 1.1 5 

10000 
64 0.9 3.7 0.8 4.6 

128 0.5 4.9 0.6 5.8 
256 0.7 5.2 0.7 6.4 

15000 
64 2.9 6.3 1.2 7.3 

128 2.3 5.7 1 6.3 
256 3.4 6.9 1.1 7.2 

20000 
64 1.9 3.4 1 4.5 

128 1.4 2.9 1 3.9 
256 2.8 3.4 1.3 4.5 

 

 
(a) 

 
(b) 

 
Figure 23. (a) The sum of the AF of the intelligent driving platform under different batch sizes, 

 (b) The sum of the AF of the intelligent driving platform under different data sets 
 

We used the Raspberry Pi 4 Model B as the computing platform for the intelligent driving 
platform in order to implement road tracking on a custom track. There was no work delay during 
the road tracking process after loading the KL, KC, TDD, and PBLM-CNN21 models. The 
prediction during the experiment was that the average speed of the update would be 0.04ms, and the 
memory usage after loading the model was accounted for 68%. We used VNC to connect the 
computer to the Raspberry Pi. When the Raspberry Pi screen was transmitted to the computer, there 
may have been a screen delay, but the transfer to the screen was only to detect the motion state of 
the car and had no effect on the performance of road tracking. In order to better monitor the real-
time picture of the car, we used the Xiaomi AC2100 router as the medium in the information 
transmission part. This router supports a maximum bandwidth of 1000Mbps, which was enough to 
transmit information. The battery life of the intelligent driving platform was three hours. 
 
3.2.2 Testing the effect of different lighting sources on road tracking 
 
We tested the trained model under the lighting conditions of a window-opened room and a window-
closed room. The experiments show that all the KL, PBLM-CNN21, KC, and TDD models achieved 
road tracking under the lighting conditions of a window-closed room. Under the lighting conditions 
of a window-opened room, the KL and PBLM-CNN21 models achieved road tracking, but the KC 
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and TDD models ran out of control when performing turning actions. Road tracking was more stable 
for both lighting conditions under the lighting conditions of a window-closed room. 
 
3.2.3 The influence of different speed ratios on road tracking 
 
We recorded the AF of each model at different speed ratios. The details are recorded in Table 6. 
 
Table 6. The average number of touches on the white line at different speed ratios 

Datasets Batch size Speed 
ratios AF-KL AF-KC AF-PBLM-

CNN21 AF-TDD 

5,000 

64 

Slow 0.4 2.3 0.2 3.3 
Normal 1.5 4.3 0.8 5.4 

Fast 3.3 5.3 1.2 5.3 

128 

Slow 0.1 1.7 0.1 2.9 
Normal 1.3 3.3 0.9 3.8 

Fast 3.3 4.1 1.5 5.2 

256 

Slow 0.7 3.2 0.3 2.8 
Normal 1.9 4.7 1.1 5 

Fast 4.3 5.9 2 6.3 

10,000 

64 

Slow 0.5 2.9 0.2 3.8 
Normal 0.9 3.7 0.8 4.6 

Fast 1 4.8 0.5 5.3 

128 

Slow 0.2 2.1 0.1 3.1 
Normal 0.5 4.9 0.6 5.8 

Fast 0.5 7.1 0.4 8.2 

256 

Slow 0.6 3 0.5 4.9 
Normal 0.7 5.2 0.7 6.4 

Fast 0.9 8.3 0.7 8.9 

15,000 

64 

Slow 0.6 3.7 0.3 4.5 
Normal 2.9 6.3 1.2 7.3 

Fast 5 10.2 2.3 11.2 

128 

Slow 0.5 2.9 0.3 3.7 
Normal 2.3 5.7 1 6.3 

Fast 4.7 9.5 2.6 10.7 

256 

Slow 0.8 3.9 0.2 4.8 
Normal 3.4 6.9 1.1 7.2 

Fast 5.1 10.9 2.8 11.1 
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Table 6. The average number of touches on the white line at different speed ratios (continued) 

Datasets Batch size Speed 
ratios AF-KL AF-KC AF-PBLM-

CNN21 AF-TDD 

20,000 

64 

Slow 0.8 2.7 0.4 3.2 
Normal 1.9 3.4 1 4.5 

     

128 

Slow 0.6 2.1 0.9 3.6 
Normal 1.4 2.9 1 3.9 

Fast 6.8 6.2 5.6 7.3 

256 

Slow 0.9 2.6 0.4 3.7 
Normal 2.8 3.4 1.3 4.5 

Fast 8.5 7.2 3.5 8.4 
 
1) The road tracking effect of model types under different speed ratios 
 
The AF of each model under different speed ratios is shown in Figure 24. As shown in Figure 24, 
we found that the AF of the four neural network models also increased as the speed increased. The 
model with the least number of AF was the PBLM-CNN21 model. 

 
 

Figure 24. The AF of different neural network models under different speed ratios 
 

2) The road tracking effect of hyper-parameters under different speed ratios 
 
The sum AF of the neural network models trained at different speed ratios with different hyper-
parameters is shown in Figure 25. As shown in Figure 25, we found that batch size and dataset had 
less impact on road tracking performance at the same speed ratio and under different speed ratios; 
the larger the speed ratio, the worse the road tracking performance. 
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(a) 

 
(b) 

 
Figure 25. (a) The sum of the AF of neural network models trained with different batch sizes 

under different speed ratios, (b) The sum of the AF of neural network models trained with 
different data sets under different speed ratios 

 

3) Comparison of all trained models 
 
The AF of the neural network models trained with different hyperparameters at different speed ratios 
is shown in Figure 26. As shown in Figure 26, we found that the PBLM-CNN21 model performed 
better than other road tracking models and was more stable under different speed ratios. 

 

Figure 26. Comparing AF of different neural network models 
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3.3 Comprehensive training loss and real road tracking performance to evaluate the 
model 
 
A comparison of training loss values and AF of different neural network models under different 
hyper-parameters is shown in Figure 27. As shown in Figure 27, we found that the model for road 
tracking with the most negligible training loss and the lowest number of AF was the PBLM-CNN21 
model. The graph also shows that the PBLM-CNN21 model had a better model architecture and 
better real-world road tracking performance. 

 
 

Figure 27. Comparison of training loss values and AF of different neural network models under 
different hyper-parameters 

 
 
4. Conclusions  
 
We proposed a novel architecture CNN model to achieve real-time acceleration and deceleration 
while performing road tracking. We built an intelligent driving platform with only one camera in 
our research. The research adopted an end-to-end control method, using the raw sensor data of a 
single camera as the input to control the intelligent driving platform in order to achieve real-time 
acceleration and deceleration while achieving road tracking. We showed that existing models failed 
to learn two inputs, steering angle, and throttle value. We proposed a novel PBLM-CNN21 model, 
which proved more suitable for computing steering angle and throttle values. 

During the model training section, we tested the effectiveness of different hyper-
parameters. We found that the batch size had less impact on training loss, and the number of data 
sets had a more significant impact on training loss. We compared the KL, KC, TDD, and PBLM-
CNN21 models. The PBLM-CNN21 model had a minor training loss. When the batch size was 64, 
and the data set was 10,000, the model had the most negligible training loss of 0.043028. The 
training loss value of our proposed PBLM-CNN21 model was 75% lower than that of existing TDD 
models. In order to ensure the efficient training of the model and obtain the most negligible training 
loss, the epoch value should be set at 53. 

In the actual road tracking performance, the KL, KC, and PRBLM-CNN21 models 
achieved real-time acceleration and deceleration while achieving road tracking. On the other hand, 
the TDD model was only able to achieve road tracking and could not achieve real-time acceleration 
and deceleration. The KL, KC, TDD, and PBLM-CNN21 models were able to perform road tracking 
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under the lighting conditions of a window-closed room. Under the lighting conditions of a window-
opened room, the KL and PBLM-CNN21 models still achieved road tracking, while the KC and 
TDD models had problems with running off the track when turning. The road tracking performance 
of the neural network model deteriorated as the speed ratio increased. The performance of our 
proposed PBLM-CNN21 model at the different speed ratios does not deteriorate as much as the 
other models. The PBLM-CNN21 model was more robust than the other models, making it more 
suitable for high-speed scenarios. The PBLM-CNN21 model displayed an 82% improvement in 
road tracking performance when compared to the TDD model. 

In future work, we will continue to study the relevant neural network architecture and 
parameters in order to optimize the PBLM-CNN21 model. At the same time, considering that the 
actual environment will not be as perfect as the simulated scene, we will conduct training and testing 
under more complex road conditions, which will include rough ground, bumps, and obstacles. It is 
worth investigating how we can ensure that the model still has good road tracking performance in 
the face of more ambient noise. Furthermore, many computing platforms can implement the road 
tracking task, and we will compare the road tracking performance of different computing platforms, 
such as the STM computing platform. 
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