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Abstract 

 
Cloud computing is the industry standard for data storage, sharing, processing, and other 
services. It experienced numerous security problems as a result of the regular attacks. 
These security issues are worsened by the variety of attack situations that exist. One of 
the most established safety measures applied to cloud computing is the intrusion detection 
system (IDS). An effective security model is necessary for the IDS system, though, to 
increase cloud security. In this study, we used ensemble categorization methods and a 
feature selection algorithm to construct an effective IDS for the cloud environment. The 
proposed BOT-IOT, CSE-CIC-IDS 2018, and Ciciddos datasets were pre-processed, 
which involved cleaning the data, applying one hot encoding, and normalizing steps. The 
Enhanced Black Widow Optimization (EBWO) algorithm was employed to choose the most 
advantageous reduced feature sets from the provided incursion datasets. We used an 
ensemble of Hierarchical Multi-scale LSTM (HMLSTM) and Darknet Convolutional Neural 
Network (DNetCNN) to categorize the attacks. The combination of DNetCNN and 
HMLSTM was used to identify intrusions, effectively classifying attacks, lowering false 
alarm rates, and increasing detection rates. Simulation research showed that the proposed 
strategy performed better than the baseline in terms of F-Score, DR, and FPR, as well as 
accuracy, detection rate, and precision. 
 
Keywords: cloud; intrusion detection system; enhanced black widow optimization 
algorithm; darknet convolutional neural network; Hierarchical Multi-scale LSTM 
 

1. Introduction 
 
As cloud computing evolves and derives from distributed computing, its use is expanding, 
and numerous clients can utilize the exact cloud resources by utilizing logical isolation 
methods (Du et al., 2023). Since destructive network attacks are getting more frequent and 
advanced, they can increase network traffic. The most important benefit of cloud computing 
is that it allows organizations to save money by using on-demand services virtually over 
the internet (Ravi et al., 2022; Hnamte & Hussain, 2023). This benefit outweighs other  
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advantages like scalability, rapid flexibility, and measurable capabilities. One of the most 
challenging tasks is protecting cloud assets and the information flow between them 
because the number of invasions grows daily (Gupta et al., 2022). 

The scientific community has developed a wide range of machine learning-based 
IDS approaches (Alqahtani & Kumar, 2022; Kim& Pak, 2022; Kasongo, 2023). Traditional 
machine learning techniques help to enhance the categorization of small and low-
dimension datasets. However, these algorithms' classification reliability deteriorates when 
dealing with circumstances demanding significant dimensionality and nonlinearity (Imran 
et al., 2022). As a result, intrusion detection models have become increasingly necessary 
to address the effectiveness of categorization problems as AI advances. The problem with 
deep learning approaches, such as CNN and LSTM, is how well they adapt to high-
dimensional and nonlinear input (Thirimanne et al., 2022; Soltani et al., 2023). CNN and 
LSTM provide nonlinearity solution strategies for modelling nonlinear systems (Thakkar & 
Lohiya, 2023). 

In past works, CNN and LSTM were employed to tackle high-dimensional data 
issues using the deep learning approach (Rahman et al., 2020; Saba et al., 2022). 
Automated machine learning (AutoML), a relatively new field of data science and machine 
learning, is a subset of these disciplines. The adaptability of AutoML makes it useful for 
machine learning researchers, data scientists, and engineers (Kunang et al., 2021). 
Research studies show that AutoML can revolutionize ML model construction even without 
technical expertise or ML proficiency. AutoML architectures produce a code pipeline by 
selecting a model from input datasets based on machine learning model recommendations 
(Thakkar & Lohiya, 2021; Azzaoui et al., 2022; Vishwakarma & Kesswani, 2022;). The 
selection is carried out based on the precision of these ML methods (Mighan & Kahani, 
2021). Finding the best-performing model pipeline using manual settings of the model 
parameters is very difficult; AutoML solves this problem (Wang et al., 2021; Saheed et al., 
2022). 

We proposed ensemble approaches based on Darknet Convolutional Neural 
Networks (DNetCNN) and Hierarchical Multiscale LSTM (HMLSTM) to classify the attack 
categories in this research. 

Our research introduces several novel contributions to the field of network intrusion 
detection, with novelty at its core. First, our preprocessing methodology incorporates state-
of-the-art methods which are essential for improving the quality of data for the analysis that 
follows. We use a powerful Conditional Generative Adversarial Network (CGAN) to 
enhance minority samples to address the problem of imbalanced datasets and increase 
the accuracy and robustness of the model. Second, we present the Enhanced Black Widow 
Optimization (EBWO) algorithm, designed to simplify intrusion detection model training, to 
maximize learning efficiency and minimize computational complexity. Finally, we present 
and put into practice two hybrid deep learning architectures specifically created to 
categorize network intrusion attacks: HMLSTM and DNetCNN. The ensemble goal of these 
techniques is to increase detection rates, reduce false alarms, and improve attack 
classification accuracy.  

The following are the paper's main contributions:  
• We apply a one hot encoding model, cleaning the data, and normalizing the data 

in the pre-processing step. To increase the minority samples, an effective 
conditional Generative Adversarial Network (CGAN) is used. 

• To reduce the computation complexity and improve the learning algorithm 
efficiency, we utilize the Enhanced Black Widow optimization (EBWO) algorithm. 
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• Finally, two hybrid deep learning techniques (HMLSTM and DNetCNN) are used 
for classifying the network intrusion attacks. So, our approach can efficiently 
classify the attacks, reduce the number of false alarms, and improve detection 
rates. 

• Several experiments have been run on the Ciciddos, CES-CIC-IDS 2018, and 
BOT-IOT datasets. The findings from experiments demonstrate that our proposed 
network was effective and outperformed all previous methods. 
The field of study surrounding Network Intrusion Detection System (NIDS) is quite 

extensive. CNN, RNN, machine learning, and hybrid models are examples of current 
approaches utilized in IDS. The issues of low detection accuracy and difficulties in 
identifying specific types of occurrences have been addressed by researchers in the field 
of IDS using various methods.  A few recent, relevant articles are discussed below. 

Khan (2021), presented a system for detecting network intrusions that use a 
CRNN. Employing CRNN and DL-based hybrid recognition, a system is developed for 
anticipating and classifying destructive cyber-attacks on the network. While CNN employs 
convolution to capture local information, the RNN gathers temporal characteristics to 
improve the efficiency and predictions of the IDS in the HCRNNIDS. The suggested 
method reliably identified malicious attacks up to 97.75% of the time with tenfold cross-
validation. 

Devan& Khare (2020) introduced the XGBoost-DNN-based classification algorithm 
for the IDS. With XGBoost, regularization and overfitting issues are resolved. XGBoost 
allows quicker detection of network intrusions than the current models employed for binary 
classification of intrusion detection. DNN was used to classify network intrusions. 
Compared to the earlier approaches, the strategy achieved 97% accuracy on the NSL-
KDD dataset. 

A NIDS was developed by Liu & Hu (2021) using LightGBM and an adaptive 
synthetic (ADASYN) oversampling technique. The training data disparity is fixed by 
employing the ADASYN oversampling approach, which boosts the minority samples. The 
LightGBM hybrid learning algorithm was applied to significantly reduce the system's time 
complexity while preserving the precision of detection. On datasets from NSL-KDD, 
UNSW-NB15, and CICIDS 2017, the suggested approach achieved accuracies up to 
92.57%, 89.56%, and 99.91%. 

Chiba et al. (2019) combined the Classical Auto Encoder (CAE) technique with a 
deep neural network for a NIDS. Due to the properties of the presented method, network 
anomalies can be found in two steps. In the initial phase, feature engineering was done 
using a CAE. In the second phase, categorization was done using a DNN. The method 
obtained an accuracy of 91.29% on the UNSW-NB15 dataset. 

Babu & Rao (2023) presented an effective approach per an improved conditional 
generative adversarial network (MCGAN) for solving the unbalanced problem by balancing 
minority and majority classes. To effectively categorize the multi-class ID, the Bidirectional-
Long Short-Term Memory method was eventually included. The proposed approach 
performed better when measured against current approaches. The overwhelming majority 
of relevant publications rely on outdated NSL-KDD and KDD datasets. These datasets are 
of minimal use to a modern IDS. Since the creation of these datasets in 1999, both normal 
and malicious network traffic have undergone considerable changes, rendering the bulk of 
the conclusions drawn from them negligible in value.  

To solve several shortcomings of previously recommended systems, such as low 
attack detection for irregular attacks, and incorrect classification of assaults, we provide an 
ensemble IDS that combines various categorization techniques, namely HMLSTM and 
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DNetCNN. To assess its performance in identifying network intrusions, we used three 
standard datasets, which we divided into training and testing datasets. We also compared 
it to other ML and DL-based techniques. 
 

2. Materials and Methods 
 
IDS have attracted a lot of focus because it can instantly react to intrusions from the inside 
and outside. A detection-based approach for identifying malicious was conducted and 
featured intrusion detection that can distinguish between an attack and a non-attack to 
increase detection precision and decrease false alarm rates. 

In the initial stages of preprocessing, the data were cleaned, hot encoded, and 
normalized. Second, the feature selection process was carried out to prevent the high 
dimensionality curse. Unneeded features were eliminated using the Enhanced Black 
Widow Optimization Algorithm (EBWO) based on the feature relevance score. Third, the 
combined DNetCNN and HMLSTM classifiers are constructed and trained. The assaults 
are categorized using the ensemble classifier. Three datasets were used to illustrate the 
utility of the NIDS. The proposed strategy's primary goal is to prevent unauthorized access 
and data hacking. The study can be helpful to businesses that use a cloud and have to 
cope with various forms of malicious activity by intruders. The architecture of the proposed 
methodology is illustrated in Figure 1. 
 

 
 

Figure 1. The overall framework of the proposed methodology 
 
2.1 Problem statement 
 
This research discusses some of the significant research issues that necessitate careful 
consideration. Using a proper dataset is a challenging issue in the development of an IDS. 
The primary data sources utilized by existing IDS systems, such as the KDD-99 or NSL-
KDD benchmark datasets, are untrustworthy in terms of efficiency findings since they 
contain old traffic, do not adequately reflect current attack situations, and lack real-time 
characteristics. This issue was solved by analyzing more recent datasets, such as the 
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UNSW-NB15, CICIDS-2017, Mawilab, and IoT-23 datasets. IDS utilizes machine learning 
techniques that are Data-Fit. Even though the data was collected from a single network, a 
comparable IDS needed to be constructed on a different network. Finding attacks hidden 
by evasion tactics is another challenging issue for an intrusion detection system. How 
resistant IDS is to various evasion techniques needs further investigation. 
 
2.2 Data preprocessing 
 
Dataset processing is a crucial technique that is applied to every dataset employed in this 
work.  
 
2.2.1 Cleaning the data 
 
To deal with missing or damaged data, we looked at entire datasets. We began by 
identifying all instances of missing data and data that had inadequate quantities, such as  
-inf, +inf, nan, and so forth, to accomplish this. Because the dataset contained a sizable 
amount of data, any specimens with incorrect or missing entries were removed. 
 
2.2.2 One-hot processing 
 
The method was employed to translate the dataset's symbolic properties into numerical 
attributes. It is a practical and attractive encoding method and is a widely utilized approach 
for addressing the ordinal property's neutralization. Ordinal properties are converted into a 
binary vector, where one unit is given a value of 1, while the remaining units are given 
values of 0. A value of 1 in an entity's integer denotes the possibility that there are numbers 
that could fit the category feature. 
 
2.2.3 Data normalization 
 
To balance the wide variety of data properties throughout the normalization process and 
speed up the proposed categorization strategy's ability to discover the ideal solution, data 
scaling was used. To scale the attribute values, we applied the maximum-minimum 
normalization approach. Equation 1 states that all values for attributes are normalized to 
fall between a predefined range of (0, 1). 
 

𝒚𝒚′ = 𝒚𝒚−𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎
𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

                                                       (1) 
 

While 𝑦𝑦 represents the initial value and 𝑦𝑦′ represents normalized gain. The data 
collection's minimum and maximum values are denoted as min and max. The values range 
from 0 to 1.  With the help of the minimum and maximum values calculated for every 
column, the data in the training portion was normalized. 

 
2.3 Imbalanced data handling using CGAN 
 
A dataset imbalance between the CICDDoS2019, BOT-IOT, and CSE-CIC-IDS 2018 
datasets resulted in 2 extensive class descriptions for approximately 50% of the dataset. 
As a result, before categorization, the dataset needed to be balanced. In order to balance 
the datasets, a conditional Generative Adversarial Network (GCN) based oversampling 
strategy was used.  The GCN architecture, an extension of the GAN architecture, puts a 
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producer G against a discriminator D to determine which can perform better. It is 
constructed as a function to confuse the discriminator. The discriminator's objective is to 
distinguish between samples generated by the generator and instances from the provided 
database. The generator module G, denoted as G: Z→ X, generates noise. Z is a noise 
space with arbitrary dimension dz. D: X (0, 1) that denotes the discriminative module, and 
an estimate of the probability that a specimen will emerge from a distribution of data rather 
than a general distribution G is provided. The CGAN architecture expands the probabilistic 
method G to incorporate the additional space Y, designating external data from the training 
data as shown in equation (2): 
 

G: Z × Y → X                                                                       (2) 
 

In the same manner as G, the discriminator D is upgraded which is illustrated in 
equation (3): 
 

D: X × Y → (0, 1)                                (3) 
 

The function is written as follows in equation (4) for this two-method MLP with two 
players: 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 𝑉𝑉 (𝐷𝐷,𝐺𝐺) = 𝐸𝐸𝐷𝐷 + 𝐸𝐸𝐺𝐺                             (4) 
While, 
 

𝐸𝐸𝐷𝐷 = 𝐸𝐸𝑥𝑥,𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦)(𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷(𝑥𝑥,𝑦𝑦)) 
𝐸𝐸𝐺𝐺 = 𝐸𝐸𝑧𝑧~𝑝𝑝𝑧𝑧(𝑧𝑧),𝑦𝑦~𝑝𝑝(𝑦𝑦)(𝑙𝑙𝑙𝑙𝑙𝑙(1−𝐷𝐷(𝐺𝐺(𝑧𝑧,𝑦𝑦),𝑦𝑦))) 

 
The (x, y) X→Y values originate from the data distribution data (x, y), the audio 

signal pz(z), and the Y values originate from provisional eigenvectors in the training phase 
and are determined by the probability density by (y).  
 
2.4 Feature selection 
 
To select the most important features, the Enhanced Black Widow Optimization Algorithm 
(EBWO) was used in this phase. The FS technique seeks the fewest features that satisfy 
a given criterion to produce a model for prediction with the highest degree of accuracy. 
Benefits of feature selection include decreased computational efficiency, enhanced 
learning performance, the removal of redundant data, and increased generalization and 
comprehension of the data. 

The Enhanced Black Widow Optimization Algorithm (EBWO) was chosen for its 
adaptive and competitive behavior. It efficiently explores and exploits the search space, 
making it well-suited for the complex nature of network intrusion detection. EBWO is 
designed to have faster convergence rates than traditional swarm intelligence algorithms, 
crucial for real-time intrusion detection where timely responses are essential. Its effective 
balance between exploration and exploitation reduces the likelihood of getting stuck in local 
optima, enabling the identification of diverse and sophisticated attack patterns. Additionally, 
EBWO is flexible and robust, ensuring consistent performance across various datasets and 
attack scenarios. When compared to other swarm intelligence algorithms, EBWO is 
expected to demonstrate superior detection accuracy, lower false alarm rates, faster 
convergence, and better scalability. These advantages stem from EBWO's adaptive nature 
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and efficient handling of large datasets. Consequently, EBWO's robustness and versatility 
make it a reliable choice for enhancing network intrusion detection systems, outperforming 
other algorithms in key performance metrics. 

 
2.4.1 Background of black widow spider 
 
The spider, a small-sized member of the Orygiidae family, is most commonly seen in 
European countries that border the Mediterranean Sea. Female spiders spend most of 
their time on webs doing activities other than eating, mating, or giving birth. The four main 
steps of the BWO algorithm are mutation, reproduction, cannibalism, and population 
initialization.  
 
1) Initialization 
 
An individual spider is represented as 𝑊𝑊𝑁𝑁×𝐷𝐷 = (𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑁𝑁) with N widows X1, X2, … , XN. 
The dimension of an optimization issue is represented by D. In the individual, an i-th widow 
is represented by𝑋𝑋𝑖𝑖 = (𝑚𝑚𝑖𝑖,1, 𝑚𝑚𝑖𝑖,2,⋯ , 𝑚𝑚𝑖𝑖,𝐷𝐷)(1 ≤ 𝑚𝑚 ≤ 𝑁𝑁). Every individual prospect is depicted 
in equation (5).  
 

𝑚𝑚𝑖𝑖,𝑗𝑗 = 𝑙𝑙𝑗𝑗 + 𝑟𝑟𝑚𝑚𝑚𝑚𝑟𝑟(0,1) ⋅ (𝑢𝑢𝑗𝑗 − 𝑙𝑙𝑗𝑗),1 ≤ 𝑗𝑗 ≤ 𝐷𝐷,                                            (5) 
 

 The upper and lower bound of the variables are represented by𝑈𝑈 = (𝑢𝑢1,𝑢𝑢2,⋯ ,𝑢𝑢𝐷𝐷), 𝐿𝐿 =
(𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝐷𝐷).  
 
2) Procreation 
 
The special way that black widows mate allows them to create a new generation. To begin 
mating, a population of spiders designated as the mother and father spiders is randomly 
chosen, and they are then paired up based on procreating rate (Pp). By using equation (6), 
the progeny is created. 
 

�
𝑌𝑌𝑖𝑖 = 𝛼𝛼𝑋𝑋𝑖𝑖 + (1 − 𝛼𝛼)𝑋𝑋𝑗𝑗
𝑌𝑌𝑗𝑗 = 𝛼𝛼𝑋𝑋𝑗𝑗 + (1 − 𝛼𝛼)𝑋𝑋𝑖𝑖

,                                                              (6) 

 
Mother and father spiders are identified as Xi and Xj. By mating, Yi and Yj are produced. 
Additionally, the solution vector is a D-dimensional array that contains random numbers.  
 
3) Cannibalism 
 
Three types of cannibalism are present in this step: sexual cannibalism, cannibalism 
among siblings, and cannibalism among offspring and mothers. Excellent spiders can be 
kept alive by removing the weak ones. 
Sexual cannibalism: Female black widows eat their partners either during or shortly after 
mating.  
Sibling cannibalism: The spiders struggle to locate or identify enemies, and their siblings 
are often eaten by more dominant spiders. According to biological competition theories, a 
spider's strength is determined by its ability to survive and reproduce, which directly 
correlates with its fitness. The number of survivors is calculated using a cannibalism rating 
(CR). 
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Cannibalism between offspring and mother: Spiders might even consume the mothers 
of some offsprings who are incredibly powerful. In other words, if parents create a solution 
with a high fitness value, the result will swap out its mother and enter the following 
generation.  Figure 2 displays a mutation operator. 
 

 
 

Figure 2. Mutation method 
 

4) Mutation 
 
The mutation rate (Pm), a known constant in this stage, determines how many members 
of population will mutate.  
 
5) Modified black widow optimization algorithm  
 
By mimicking the behavior of the black widow, the spider individuals in the BWO algorithm 
look for the best people within the search space. Its simplicity in use and comprehension 
is a benefit. The original BWO algorithm's convergence rate and precision, meanwhile, are 
still insufficient for dealing with actual optimization issues. In this work, an enhanced BWO 
called MBWO was proposed. However, three key parameters are adaptively estimated to 
reduce their impact on the overall process.  
 
6) Strategy for selection 
 
In the BWO, when the female is anxious to mate, a male widow is chosen at random. This 
means that the development of new solutions happens independently of the design of the 
parents. The offspring acquires too many genes that are identical to those of its parents, 
which is akin to the behavior of inbreeding. Numerous subpar solutions are generated in 
this situation, resulting in slow convergence and low precision. A fresh approach is 
therefore suggested to address the drawback. Every female's weight is used in the method 
to determine the pheromone concentration using equation (7). 
 

𝑤𝑤𝑖𝑖 = 𝑓𝑓(𝑋𝑋𝑖𝑖)−𝑓𝑓𝑤𝑤𝑙𝑙𝑤𝑤𝑤𝑤𝑑𝑑
𝑓𝑓𝑏𝑏𝑏𝑏𝑤𝑤𝑑𝑑−𝑓𝑓𝑤𝑤𝑙𝑙𝑤𝑤𝑤𝑤𝑑𝑑

.                                                     (7) 
 

While the values of forest and best correspond to the population's worst and best fitness, 
respectively. Priority in selecting the male spider belongs to the female with more weight. 
The Euclidean distance as well as the similarity among spiders, can be calculated using 
equation (8). 
 

𝑟𝑟𝑖𝑖𝑗𝑗 = �∑ (𝑚𝑚𝑖𝑖,𝑘𝑘 − 𝑚𝑚𝑗𝑗,𝑘𝑘)2𝐷𝐷
𝑘𝑘=1 �1/2.                                                     (8) 
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The least comparable male in a population of spiders is chosen for mating to prevent 
inbreeding. Once a person is chosen, they cannot be chosen again. 
 
7) Mutation operator 
 
When an optimization model has multiple local optimal solutions, the BWO is more likely 
to select the local solution than the best outcome due to a basic mutation mechanism called 
premature convergence. Spiders are chosen at random to experience the following 
modifications based on the mutation rate (Pm), as indicated by equation (9). 
 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡+1 = 𝑋𝑋𝑏𝑏𝑛𝑛𝑏𝑏𝑡𝑡𝑡𝑡 + 𝑆𝑆 ⋅ (𝑋𝑋𝑟𝑟1𝑡𝑡 − 𝑋𝑋𝑟𝑟2𝑡𝑡 ),                                                     (9)  
 

Among the current population, where 𝑋𝑋𝑟𝑟1𝑡𝑡 ,𝑋𝑋𝑟𝑟2𝑡𝑡  are randomly chosen. 𝑋𝑋𝑏𝑏𝑛𝑛𝑏𝑏𝑡𝑡𝑡𝑡  
represents the best individual.  𝑆𝑆 = 𝑡𝑡/𝑇𝑇  is the mutation operator that gets more powerful 
as iterations. Population diversity is estimated here using equation (10). 
 

𝐷𝐷𝑚𝑚𝐷𝐷𝐷𝐷𝑟𝑟𝐷𝐷𝑚𝑚𝑡𝑡𝑦𝑦 = 1
|𝑁𝑁|⋅|𝑆𝑆|

∑ �∑ (𝑚𝑚𝑖𝑖𝑗𝑗 − �̄�𝑚𝑗𝑗)2𝐷𝐷
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 ,                                          (10) 

 
Where population size and dimension are denoted by N and D, respectively. The 

search space size is denoted by S., �̄�𝑚𝑗𝑗  representing the population's jth dimension's 
average value. Finding the ideal solution becomes more challenging because all of the 
chosen functions.  
 
8) Adaptive parameters  
 
Three characteristics in the original BWO are crucial for getting better results. In the 
enhanced black widow (EBW) applied for feature selection, the procreation rate (Pp) is set 
to 0.6, the cannibalism rate (CR) to 0.44, and the mutation rate (Pm) to 0.4 to balance the 
different phases of the optimization process. The procreation rate of 0.6 ensures that 60% 
of the population will be new offspring, facilitating adequate exploration of the search space 
while preserving the integrity of existing solutions. The cannibalism rate of 0.44 indicates 
that 44% of the population is eliminated, promoting the survival of stronger candidates and 
maintaining population diversity. The mutation rate of 0.4 signifies that 40% of the offspring 
will undergo mutations, introducing genetic diversity and aiding in the exploration of new 
areas in the search space, thereby avoiding local optima. These specific parameter values 
were chosen to achieve an optimal balance between exploration and exploitation, ensuring 
that the EBWO algorithm effectively identifies the most relevant features for classifying 
network intrusion attacks. Whether these values were determined through empirical 
experimentation or referenced from existing literature, they were selected to enhance the 
algorithm's overall performance in terms of convergence speed, accuracy, and robustness. 
This strategic use of EBWO for feature selection significantly contributes to the 
improvement of detection rates, reduction of false alarms, and efficiency of the learning 
algorithm in handling network intrusion detection. 

In differential evolution (DE), the control factors were directly linked to people and 
changed to produce better people. Additionally, artificial neural networks were used to 
choose the ideal parameters. Therefore, it was a challenge to think about how to alter these 
parameters to increase the algorithm's success. To balance exploitation and exploration 
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and then make the computation simpler, parameters had to be adjusted as the number of 
iterations increased rather than being set to constant values. 

 
2.4.2 Computational complexity 
 
Regarding the enhanced algorithm upgrades, the new selection strategy's primary factor 
in increasing the algorithm's temporal complexity is the separation between mother spiders 
and candidate individuals. The distance matrix indicated that Mdist (which is employed to 
calculate the distance among both gender spiders in the enhanced choosing technique), 
N, D, and T together determine the computational complexity of EBWO. Equations (11) 
and (12) illustrate the computational complexity formula. 
 
𝑂𝑂(𝐸𝐸𝐸𝐸𝑊𝑊𝑂𝑂) = 𝑂𝑂(𝑇𝑇(𝑂𝑂(𝑀𝑀𝑑𝑑𝑖𝑖𝑏𝑏𝑡𝑡)+)𝑂𝑂(𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝐷𝐷𝑚𝑚𝑡𝑡𝐷𝐷 + 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑙𝑙𝑚𝑚𝐷𝐷) + 𝑂𝑂(𝑚𝑚𝑢𝑢𝑡𝑡𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑚𝑚))                   (11) 

 
= 𝑂𝑂(𝑇𝑇(𝑁𝑁2 + 𝑁𝑁𝐷𝐷 + 𝑁𝑁))                                                            (12) 

 
2.5 Classification 
 
A new classifier ensemble that was a combination of DNetCNN and HMLSTM was created 
to generate greater performance results and attain the significant efficiency of IDS. In the 
research on classifying attack categories, the choice of models like HMLSTM and 
DNetCNN was driven by their specific strengths in handling the complexities of attack data. 
HMLSTM was selected for its capability to capture hierarchical temporal dependencies, 
essential for identifying multiscale patterns in attacks that evolve over different time scales. 
This model efficiently processes data at various resolutions, balancing memory usage 
while effectively discerning both short-term fluctuations and long-term trends in attack 
behaviours. DNetCNN, on the other hand, excels in extracting spatial features from 
structured data, making it particularly suitable for tasks where identifying intricate spatial 
patterns in network traffic or other structured attack data is crucial. In contrast, Recurrent 
Neural Networks (RNNs) combined with LSTM were not chosen due to their limitations in 
hierarchical processing and spatial feature extraction. While RNNs with LSTM are adept at 
capturing temporal dependencies, they lack inherent support for multiscale temporal 
analysis and may face challenges with computational efficiency and spatial feature learning 
compared to more specialized models like HMLSTM and DNetCNN. Therefore, the 
selection of HMLSTM and DNetCNN was based on their suitability for handling the specific 
characteristics and challenges posed by attack data classification in the research context. 
 
2.5.1 Darknet Convolutional Neural Network (DNetCNN) 
 
Artificial neural networks and deep learning are crucial components of the present 
research's regression and categorization techniques. Convolutional neural networks were 
shown to be the most effective classifiers among the various deep learning models. 
Although the data used was clean and free of noise, the traditional convolutional neural 
network (CNN) classified the features as valuable. However, if the quality of the data was 
poor, the accuracy of the CNN's classification was negatively impacted. To increase the 
categorization accuracy of IDS, the DNetCNN framework was included as the initial layer 
of CNN. Darknet-19 is a classifier based on a deep learning model that uses the YOLO 
(You Only Look Once) detection mechanism to identify items in real time. The activation 
function is responsible for activating five pooling layers, 19 convolutional layers, and the 
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Darknet structure as a whole. The function of sigmoid activation was utilized for binary 
categorization. Softmax activation was employed for multi-categorization. Employing 
equation (13), a 2D convolutional process was carried out for the input picture X and kernel 
K. 
 

𝐶𝐶(𝑋𝑋,𝐾𝐾)(𝑖𝑖,𝑗𝑗) = ∑ ∑ 𝐾𝐾(𝑟𝑟, 𝑝𝑝) × 𝑋𝑋 × (𝑚𝑚 − 𝑟𝑟, 𝑗𝑗 − 𝑝𝑝)𝑐𝑐𝑟𝑟                                          (13) 
 

The input matrix for K is parameterized in steps. Since the testing dataset for IDS involves 
binary categorization, equation (14) is applied. 
 

𝐷𝐷𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝𝑚𝑚𝑟𝑟(ℎ) = 1
1+𝑛𝑛−𝑋𝑋𝑖𝑖

                                                         (14) 
 

Sixteen convolution layers were present in the proposed DNetCNN. Every Darknet layer 
had a convolutional layer for convolution and activation operations. The same three 
sequential shapes were applied every four convolution layers. The input data was 
standardized via the normal functioning of the convolution layers, which also helped reduce 
training time. The neuron will not deactivate due to the activation function. Max pooling was 
performed using a 2x2 filter in the pooling layer, maximizing the area covered by the filters. 
In the Darknet model, the convolution layers used filters of varying sizes: 8, 16, 32, and 64. 
The initial layer was a Darknet layer with a 3x8 filter. Following that, DN, pool, and CNN 
were the subsequent tiers. A 256-valued filter was used in the final convolution layer.  
 
2.5.2 Hierarchical Multi-scale LSTM (HMLSTM) 
 
LSTM neural networks are widely used to retrieve the time-domain aspects of time-series 
data. In this study, an upgraded LSTM known as HMLSTM was employed for this. There 
are several different iterations of the HMLSTM model. The HMLSTM was modified in this 
study to meet the criteria of the IDS model. The proposed approach features an introduced 
parameterized boundary detector that generates binary output values for every layer to 
learn the condition of termination and produce the temporal features. This enables layer ℓ 
feature maps as input from all preceding layers and generates a feature map 
concatenation. Using this method, the LSTM model's learning property for spatial features 
is enhanced, resulting in a classifier that is more effective at detecting intrusions. Gates 
and the candidate values are represented as follows. These common functions are 
enhanced by the border detector variable (𝑧𝑧𝑡𝑡) which is shown in equation (15) 
 

⎣
⎢
⎢
⎢
⎡
𝑚𝑚𝑡𝑡
𝑓𝑓𝑡𝑡
𝑢𝑢𝑡𝑡
𝑝𝑝𝑡𝑡
𝑧𝑧𝑡𝑡 ⎦
⎥
⎥
⎥
⎤

= 𝑊𝑊𝑚𝑚𝑡𝑡 + 𝑈𝑈ℎ𝑡𝑡−11 + 𝑧𝑧𝑡𝑡−1𝑉𝑉ℎ𝑡𝑡−12 + 𝑐𝑐                                                (15) 

 
In the HMLSTM framework, an upgrade procedure is performed at every level, as 
described by equation (16). 
 

ℎ𝑡𝑡𝑙𝑙 , 𝑝𝑝𝑡𝑡𝑙𝑙 , 𝑧𝑧𝑡𝑡𝑙𝑙 = 𝑓𝑓𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆𝐻𝐻𝐻𝐻𝑙𝑙 (𝑝𝑝𝑡𝑡−1𝑙𝑙 , ℎ𝑡𝑡−1𝑙𝑙 , ℎ𝑡𝑡𝑙𝑙−1, ℎ𝑡𝑡−1𝑙𝑙+1 , 𝑧𝑧𝑡𝑡−1𝑙𝑙 , 𝑧𝑧𝑡𝑡𝑙𝑙−1)                    (16) 
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The function 𝑓𝑓𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆𝐻𝐻𝐻𝐻𝑙𝑙 represents the forget gate of HMLSTM; the two boundary states 𝑧𝑧𝑡𝑡𝑙𝑙−1 
are used for this determination. The upgraded cell states are expressed as per equation 
(17) 
 

𝑝𝑝𝑡𝑡𝑙𝑙 = �
𝑓𝑓𝑡𝑡𝑙𝑙𝛩𝛩𝑝𝑝𝑡𝑡−1𝑙𝑙 + 𝑚𝑚𝑡𝑡𝑙𝑙𝛩𝛩𝑠𝑠𝑡𝑡𝑙𝑙

𝑝𝑝𝑡𝑡−1𝑙𝑙

𝑚𝑚𝑡𝑡𝑙𝑙𝛩𝛩𝑠𝑠𝑡𝑡𝑙𝑙

𝑚𝑚𝑓𝑓
𝑚𝑚𝑓𝑓
𝑚𝑚𝑓𝑓

𝑧𝑧𝑡𝑡−1𝑙𝑙 = 0
𝑧𝑧𝑡𝑡−1𝑙𝑙 = 0
𝑧𝑧𝑡𝑡−1𝑙𝑙 = 1

𝑚𝑚𝑚𝑚𝑟𝑟
𝑚𝑚𝑚𝑚𝑟𝑟

(𝐹𝐹𝑙𝑙𝑢𝑢𝐷𝐷ℎ)

𝑧𝑧𝑡𝑡𝑙𝑙−1 = 1(𝑈𝑈𝑝𝑝𝑟𝑟𝑚𝑚𝑡𝑡𝐷𝐷)
𝑧𝑧𝑡𝑡𝑙𝑙−1 = 0(𝐶𝐶𝑝𝑝𝑝𝑝𝑦𝑦)                              (17) 

 
In this case, g stands for the vector of cell proposal, in contrast to an ordinary LSTM. 

If the boundary is discovered at the bottom layer𝑧𝑧𝑡𝑡𝑙𝑙−1  but was absent in the 
preceding time step, an upgrade operation is carried out to rectify the layer l summary 
representation. The HMLSTM gating operations in Figure 3 illustrates the information flow 
between the model's low, middle, and high hierarchical layers. Information flow throughout 
and between layers is controlled by input, forget, and output gates. The model is able to 
analyze sequences at different levels of abstraction because boundary detectors determine 
when to update or maintain states.  

Equation (18) illustrates the HM gate operation. The expression can be updated 
using the equations (19), (20) and (21). 

As illustrated in Figure 4, one can obtain an HMLSTM learning temporal 
characteristic’s output module with three layers. 

 

 
 

Figure 3. HMLSTM model’s Gating operation  
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Figure 4. Output module of HMLSTM 
 

⎣
⎢
⎢
⎢
⎢
⎡𝑓𝑓𝑡𝑡

𝑙𝑙

𝑚𝑚𝑡𝑡𝑙𝑙

𝑝𝑝𝑡𝑡𝑙𝑙

𝑠𝑠𝑡𝑡𝑙𝑙

�̃�𝑧𝑡𝑡𝑙𝑙 ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

𝐷𝐷𝑚𝑚𝑠𝑠𝑚𝑚
𝐷𝐷𝑚𝑚𝑠𝑠𝑚𝑚
𝐷𝐷𝑚𝑚𝑠𝑠𝑚𝑚
𝑡𝑡𝑚𝑚𝑚𝑚ℎ

ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝐷𝐷𝑚𝑚𝑠𝑠𝑚𝑚

()𝑏𝑏𝑙𝑙𝑖𝑖𝑐𝑐𝑛𝑛𝑡𝑡
𝑟𝑟𝑛𝑛𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛𝑡𝑡(𝑙𝑙)

𝑡𝑡

𝑡𝑡𝑡𝑡𝑝𝑝−𝑑𝑑𝑡𝑡𝑛𝑛𝑛𝑛(𝑙𝑙)

𝑡𝑡

𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏−𝑟𝑟𝑝𝑝(𝑙𝑙)

⎦
⎥
⎥
⎥
⎤

     (18) 

 
Here, 

𝐷𝐷𝑡𝑡
𝑟𝑟𝑛𝑛𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛𝑡𝑡(𝑙𝑙) = 𝑈𝑈𝑙𝑙𝑙𝑙ℎ𝑡𝑡−1𝑙𝑙                                                            (19) 

 
𝐷𝐷𝑡𝑡
𝑡𝑡𝑡𝑡𝑝𝑝−𝑑𝑑𝑡𝑡𝑛𝑛𝑛𝑛(𝑙𝑙) = 𝑧𝑧𝑡𝑡−1𝑙𝑙 𝑈𝑈𝑙𝑙+1𝑙𝑙 ℎ𝑡𝑡−1𝑙𝑙+1                                                     (20) 

 
𝐷𝐷𝑡𝑡
𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏−𝑟𝑟𝑝𝑝(𝑙𝑙) = 𝑧𝑧𝑡𝑡𝑙𝑙−1𝑊𝑊𝑙𝑙−1

𝑙𝑙𝑙𝑙−1ℎ𝑡𝑡                                                    (21) 
 

To identify the binary boundary state 𝑧𝑧𝑡𝑡𝑙𝑙, the equation (22) illustrates that, 
 

𝑧𝑧𝑡𝑡𝑙𝑙 = 𝑓𝑓𝑏𝑏𝑡𝑡𝑟𝑟𝑛𝑛𝑑𝑑(�̃�𝑧𝑡𝑡𝑙𝑙)                                                     (22) 
 

It is possible to represent it using the deterministic step function is possible and is 
expressed in equation (23).  
 

𝑧𝑧𝑡𝑡𝑙𝑙 = �10
𝑚𝑚𝑓𝑓 z�𝑡𝑡𝑙𝑙 > 0.5
𝑝𝑝𝑡𝑡ℎ𝐷𝐷𝑟𝑟𝑤𝑤𝑚𝑚𝐷𝐷𝐷𝐷

                                                            (23) 

 
3. Result and Discussions 

 
This study validates three datasets to determine the effectiveness of our proposed method. 
Two groups of data samples are created, one of which is utilized as the training dataset to 
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create a classifier.  The classifier is evaluated using the testing dataset in the second stage. 
We carried out two trials to evaluate how well the model worked. In the first investigation, 
multiple categorizations were used, and in the second, it was contrasted with current 
techniques. 
 
3.1 Experimental setup 
 
Using an Intel CoreTM i5 processor with 8 GB of RAM installed, the proposed approach 
was carried out employing the Python programming language and Scikit-learn machine 
learning tools. 
 
3.2 Dataset description 
 
The NSL-KDD dataset has been widely used for IDS, although it contains obsolete traffic 
and may not adequately reflect modern attack scenarios or traffic trends. Real-time 
functions are also lacking. In this study, the most recent benchmark datasets, CSE-CIC-
IDS2018, BOT-IOT, and Cicddos2019, are used. 
 
CSE-CIC-IDS2018 (Dataset 1): a dataset made public in 2018 as part of a joint project. 
The victim network comprised a further server room and five other organizational 
departments. The harmless packets were created by network events employing the 
impersonal actions of users. One or more computers outside of the target network ran the 
malware scenarios. The original dataset had 75 features extracted using the 
CICFlowMeter-V3 initiative.  
 
BoT-IoT ( Dataset 2): A network environment including both regular and botnet traffic was 
formed in 2018. For the generation of non-IoT and IoT traffic, the Ostinato and Node-red 
tools were used. The Argus program was employed to retrieve the dataset's original 42 
features from the collected 69.3GB of pcap files.  
 
CICDDoS2019 (Dataset 3): This study makes use of the CICDoS2019 dataset, which has 
been widely used for DDoS attack detection and classification. The collection contains a 
substantial number of samples from recent, actual DDoS attacks and benign instances. 
Figure 5 displays the proposed dataset's class distribution. 
 
3.3 Performance measures 
 
Based on the findings of F-measure, precision, recall, and accuracy, the performance of 
every category is assessed. Four crucial states of the confusion matrix must be measured. 

• True Positive (TP): This shows that the approach is reliable, consistent, and 
capable of foreseeing successful results. 

• False negative (FN): Inaccurate prediction is a feature of FN. It properly predicts 
unfavorable outcomes but recognizes malicious incidents with certainty as natural 
occurrences. 

• False positive (FP): Although the number of attacks reported is typical, the model 
forecasts favorable results. 

• True negative (TN): TN classifies incidents that are well-tracked as attacks and 
foresees unfavorable outcomes. 
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Figure 5. Class distribution of proposed datasets  
 

Accuracy (AC): A model's prediction accuracy is determined by calculating the 
accuracy rate, which is the proportion of correct predictions throughout the entire data set. 
The accuracy formula is displayed in equation (24). 
 

𝐴𝐴𝐶𝐶 = 𝐻𝐻𝑁𝑁+𝐻𝐻𝑇𝑇
𝐹𝐹𝑇𝑇+𝐻𝐻𝑇𝑇+𝐹𝐹𝑁𝑁+𝐻𝐻𝑁𝑁

                                                     (24) 
 

Detection rate (DR): The DR, also called the recall rate, is the proportion of initially 
authentic assault instances that were identified as assaults within the dataset. This 
indicator is a key component that shows how well the NIDS can identify attacks. The DR 
formula is displayed in equation (25). 
 

𝐷𝐷𝐷𝐷 = 𝐻𝐻𝑇𝑇
𝐹𝐹𝑁𝑁+𝐻𝐻𝑇𝑇

                                                              (25) 
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Precision (PR): The percentage of anticipated assaults records is known as the 
precision. The PR formula is displayed in equation (26). 
 

𝑃𝑃𝐷𝐷 = 𝐻𝐻𝑇𝑇
𝐻𝐻𝑇𝑇+𝐹𝐹𝑇𝑇

                                                               (26) 
 

False Alarm Rate (FAR): The percentage of the sample's normal traffic that is 
considered to be an assault is known as the FAR. The FAR formula is displayed in equation 
(27). 
 

𝐹𝐹𝐴𝐴𝐷𝐷 = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝐻𝐻𝑁𝑁

                                                             (27) 
 

F1-score: It provides an effective evaluation by measuring the precision correlation 
coefficient and recall limit. The F1-score formula is displayed in equation (28). 
 

𝐹𝐹1 = 2 ∗ 𝑅𝑅𝑅𝑅+𝑇𝑇𝑅𝑅
𝑅𝑅𝑅𝑅+𝑇𝑇𝑅𝑅

                                                               (28) 
 

The efficiency of intrusion detection systems is thoroughly assessed by combining 
these metrics. They shed light on multiple aspects of system efficiency, including the 
system's capacity to consistently maintain overall classification accuracy (AC), prevent 
false alarms (FAR), and detect intrusions accurately (DR). When both high recall and 
precision are required, the F1 Score is especially helpful in ensuring a fair assessment of 
the system's efficacy. 
 
3.3.1 Evaluation of CSE-CIC-IDS2018 dataset 
 
This portion includes a performance summary of the dataset 1. The proposed methodology 
is contrasted with existing methods, including LR, XGB, DT, and HCRNN. The comparison 
of the effectiveness of suggested and existing techniques is shown in Table 1. 

The performance of our proposed strategy is strong when compared to other 
machine learning methods. The dataset from CSE-CIC-IDS2018 is shown in Figure 6. We 
evaluated the performance of our proposed approach using several metrics, comparing it 
to prior models: XGBoost (XGB), Decision Trees (DT), Logistic Regression (LR), and 
Hierarchical Convolutional Recurrent Neural Network (HCRNN). Though displaying 
different false alarm rates (FAR), Decision Trees, XGBoost, and Logistic Regression 
showed good performance in terms of precision (87.33% to 78.01%), recall (88.5% to 
80.1%), and F1-score (87.9% to 79.01%). With a significantly lower FAR (2.5%) and 
significantly higher precision (96.33%), recall (97.12%), and F1-score (97.6%), the 
Hierarchical Convolutional Recurrent Neural Network (HCRNN) outperformed these 
conventional models. The results of our suggested technique were 99.02% precision, 
98.92% recall, 99% F1-Score, and 99.13% DR. The current approach, HCRNN, achieved 
a similar second-best performance with 96.33% precision, 97.12% recall, 97.6% F1-Score, 
and 97.86% DR. These outcomes highlight the proposed approach's efficacy in reducing 
false alarms and improving intrusion detection accuracy, indicating its potential for reliable 
implementation in actual cloud computing settings. 
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Table 1. Evaluation performance on the dataset 1 

Approaches Precision (%) F1-Score (%) Recall (%) DR (%) FAR 
DT 87.33 87.9 88.5 88.16 7.8 
XGB 84.5 83.9 83.4 83.12 9.13 
LR 78.01 79.01 80.1 80 11.50 
HCRNN 96.33 97.6 97.12 97.86 2.5 
Proposed 99.02 99 98.92 99.13 1.3 

 

 
 

Figure 6. Performance comparison using the CSE-CIC-IDS2018 dataset 
 

Table 2 and Figure 7 compare the suggested DL techniques with currently used 
approaches. The performance metrics of different approaches in the context of intrusion 
detection are compiled in the Table. Accuracy and False Alarm Rate (FAR) were used to 
assess each method, which included DNN (Deep Neural Network), CNN (Convolutional 
Neural Network), DBN (Deep Belief Network), and a proposed approach. With a 96.2% 
accuracy rate and an 8.6% false alarm rate, LSTM performed well in accurately classifying 
instances with a moderate false alarm rate. DNN attains a 90.25% accuracy rate. With a 
FAR of 9.8% and an accuracy of 95%, DBN exhibits strong performance with somewhat 
increased false alarms. CNN's accuracy rate was 96%. By contrast, the proposed approach 
achieved the highest accuracy of 99.12% and the lowest FAR of 1.3%, outperforming all 
other methods. These findings demonstrate the proposed approach's superior efficacy in 
minimizing false alarms and achieving high accuracy, indicating its potential to improve 
intrusion detection systems in real-world applications. 

Table 3 provides the multiple categorizations of the CSE-CIC-IDS2018 dataset. 
The accuracy rate for the infiltration, DoS, and BOT classes was greater than 99%. Values 
of 1.89% and 1.76% were obtained for FPR and FNR, respectively, with SQL injection. 

 
Table 2. Comparison of existing approaches with proposed approach 

Methods Accuracy FAR 
LSTM 96.2% 8.6 
DNN 90.25% - 
DBN 95% 9.8 
CNN 96% - 
Proposed 99.12% 1.3 
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Figure 7. Accuracy comparison on the dataset 1 
 
Table 3. Multi-categorization performances on the CSE-CIC-IDS2018 dataset 

Class Accuracy (%) FPR (%) FNR (%) 
Benign 98.76±0.05 2.32±0.01 2.84±0.04 
DDos 96.15±0.01 4.03±0.02 4.06±0.01 
Bot 99.62±0.03 2.68±0.03 2.47±0.03 
Brute Force 97.89±0.07 3.45±0.05 2.17±0.05 
DoS 99.71±0.01 2.45±0.01 3.10±0.02 
Infiltration 99.56±0.05 2.03±0.05 2.13±0.03 
SQL injection 98.72±0.04 1.89±0.04 1.76±0.05 
 
3.3.2 Evaluation of BOT-IOT dataset 
 
Here, we provide a summary of the BOT-IOT dataset's results. The results of the multiple 
classifications on the BOT-IOT dataset are shown in Table 4. Figure 8 compares the 
performance of each class using the BOT-IoT dataset. Based on the results, the theft class 
had higher performance compared to other classes. 
 
Table 4. Multi-categorization performances on the BOT-IOT dataset 

Class Accuracy (%) FPR (%) FNR (%) 
Normal 99.03 2.36 3.69 
DoS 98.56 3.01 2.86 
DDoS 99.13 2.59 4.06 
Reconnaissance 97.56 2.16 1.98 
Theft 99.09 1.74 2.11 
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Figure 8. Class-wise performance comparison on the BOT-IOT dataset 
 
3.3.3 Evaluation of Ciciddos2019 
 
To evaluate the efficacy of the proposed method, multiple tests were run on the dataset 3. 
Table 5 displays the suggested method's results for multi-class classification. 

Attack-wise performance comparison on the Ciciddos2019 dataset is shown in 
Figure 9. For most classes, accuracy rates are greater than 99%.  

 
Table 5. Multi-class categorization on the Cicddos2019 dataset 

Attack types Accuracy FNR FPR 
NTP 98.89 2.17 1.15 
DNS 99.08 3.04 2.24 
LDAP 99.06 1.07 0.84 
MSSQL 98.92 0.87 1.79 
NetBIOS 99.01 1.28 0.63 
SNMP  97.65 2.14 0.72 
SSDP  98.73 0.99 1.51 
UDP  96.26 0.83 0.96 
UDP-Lag  98.43 0.71 1.64 
WebDDoS  96.64 1.06 0.87 
SYN 99.77 2.29 2.31 
TFTP 94.43 3.02 0.49 
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Figure 9. Attack-wise performance comparison on the Ciciddos2019 dataset 
 
The differentiation of the suggested model with prior approaches on dataset 3 is 

shown in Table 6 and Figure 10. With a remarkable 97% accuracy rate, the Extended 
Decision Tree led, bolstered by strong precision (99%) and recall (97%). With 98.18% 
accuracy, bi-directional LSTM came in second, with 97.93% precision and 99.84% recall. 
The accuracy of the Convolutional Neural Network (CNN) was 95.4%, and its precision-
recall scores were balanced (93.3% and 92.4%, respectively). With an accuracy of 92.5%, 
the Multi-layer Perceptron (MLP) exhibited good overall performance; however, its 
precision was relatively low at 84.4%. The robust feature representation capabilities of 
autoencoder-based approaches, AE+Regression and AE+MLP, were demonstrated with 
accuracy levels of 88.39% and 98.34%, respectively. With remarkable results in all 
categories: accuracy of 99.32%, 99.06% precision, 99.03% recall, and 98.99% F1-score, 
the suggested method surpassed the challenge and demonstrated its efficacy for precise 
and dependable classification tasks. 

 
Table 6. Performance of proposed model vs prior approaches on the Cicddos2019 
dataset 

Approaches Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
Random forest - 77 56 62 
Extended DT 97 99 97 97.8 
Extended NB 96.25 96 96 96 
Bi-LSTM 98.18 97.93 99.84 - 
CNN 95.4 93.3 92.4 92.8 
MLP 92.5 84.4 94.2 89 
AE+Regression 88.39 85.44 95.95 90.4 
AE+MLP 98.34 97.91 98.48 98.18 
Proposed 99.32 99.06 99.03 98.99 
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Figure 10. Performance comparison of proposed approach vs existing approaches 
 
3.3.4 Evaluation of overall performances 
 
Using various datasets, the proposed method against the current methods was evaluated. 
The proposed method is assessed in comparison to similar past attempts, including SVM, 
DT, RF, and DNN.  

The assessment of overall effectiveness is displayed in Table 7 and Figure 11. 
Table 7 presents a comparison of the performance metrics of several approaches to 
classification including the SVM, DT, RF, DNN, and the proposed approach. With 
corresponding precision and recall of 67.50% and 69.85% and an F-score of 56.36%, SVM 
attained a modest accuracy of 65.95%. With an accuracy of 77.99%, DT outperformed 
SVM, exhibiting balanced recall (75.59%) and precision (75.37%), yielding an F-score of 
71%. With an accuracy of 81.43% and a recall of 74.76%, RF improved efficiency even 
more and yielded an F-score of 68.40% while retaining high precision (80.10%). This 
underscored its capacity to effectively handle intricate patterns. The highest accuracy of 
99.16%, precision of 98.87%, recall of 99.03%, and F-score of 98.65% were achieved by 
the proposed approach, which surpassed all other approaches. These findings highlight 
the proposed approach's superior performance and robustness in precisely classifying 
instances while preserving high precision and recall, highlighting its potential for 
applications that require effective and dependable classification. 

 
 
 
 
 



Moudiappa et al.         Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 3), e0262276 
 
 

22 

Table 7. Overall evaluation performance 
Approaches  Accuracy (%) Precision (%) Recall (%) F-Score (%) 
SVM 65.95 67.50 69.85 56.36 
DT 77.99 75.37 75.59 71 
RF 81.43 80.10 74.76 68.40 
DNN 95.53 94.65 91.92 92.43 
Proposed 99.16 98.87 99.03 98.65 
 

 
 

Figure 11. Overall performance comparison 
 
In the present paper, we employed the Nemenyi post-hoc test for post-hoc 

analysis. The critical value that represents the average sequence variance is determined 
by the Nemenyi test in the following manner: 

 

𝐶𝐶𝐷𝐷 = 𝑞𝑞𝛼𝛼�
𝐷𝐷(𝐷𝐷 + 1)

6𝑁𝑁
 

 
where qα denotes the Tukey distribution's critical value. Based on computation, 7.822 is 
the threshold CD for α = 0.05.  

 
Table 8 illustrates that while the proposed approach differed significantly from the 

other algorithms, algorithms like RF, LightGBM, and Adaboost performed fairly close to 
each other in terms of accuracy. Table 9 shows that while the average ordinal variance of 
this algorithm and other methods was high, the effectiveness of RF, GBDT, and LightGBM 
was comparatively close to the proposed in terms of FAR. When examining these two 
indicators alone, it is evident that the proposed method has comparatively more benefits 
even though the efficiency of GBDT and LightGBM was comparable to that of the proposed 
method.   
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Table 8. Statistical test for accuracy 
 DT Adaboost RF NB SVM KNN LR ANN GBDT LightGBM 

Adaboost 3.45 - - - - - - - - - 
RF 4.21 1.68 - - - - - - - - 

NB 2.68 0 1.53 - - - - - - - 

SVM 5.04 3.97 1.50 2.47 - - -  -  

KNN 0.96 2.31 2.64 3.17 1.52 - - - - - 

LR 2.87 1.34 4.87 5.23 6.01 4.01 - - - - 

ANN 3.68 7.67 2.57 3.61 3.17 2.00 1.99 - - - 

GBDT 2.67 2.50 1.34 5.06 3.88 7.03 0.67 4.72 - - 

LightGBM 3.66 7.61 3.81 4.32 5.06 6.03 2.67 3.67 0.84 - 

Proposed 4.86 3.21 0.93 8.55 7.63 5.02 6.21 2.65 1.16 4.86 

 
Table 9. Statistical test for FAR 

 DT Adaboost RF NB SVM KNN LR ANN GBDT LightGBM 

Adaboost 4.12 - - - - - - - - - 

RF 4.35 0.87 - - - - - - - - 

NB 1.94 1.05 2.51 - - - - - - - 

SVM 3.64 1.00 1.36 0.00 - - -  -  

KNN 1.23 2.41 5.66 0.22 1.67 - - - - - 

LR 2.67 3.80 5.17 5.83 2.22 1.65 - - - - 

ANN 3.09 4.83 2.33 2.50 3.16 2.33 1.56 - - - 

GBDT 0.67 1.00 1.17 4.85 3.81 0.57 2.87 3.62 - - 

LightGBM 0.91 3.35 4.09 3.64 2.33 4.55 0.89 2.19 3.65 - 

Proposed 7.02 4.83 6.01 7.32 2.18 2.17 4.85 3.47 2.17 3.89 

 
3.3.5 Evaluation of training and testing 
 
The iteration steps are supplied along with a visual that shows the accuracy and loss value 
for IDS categorization. Figures 12, 13, and 14 illustrate the beneficial effect that the study's 
suggested technique had on convergence. Training and testing sessions were held for the 
proposed dataset. The training phase of the experiment utilizes 75% of the data, while the 
testing phase uses the remaining 25%. Training the suggested model involved 200 
iterations. A learning rate of 0.1 was found to exist. The training vs. testing datasets for 
accuracy and loss are shown in Figures 12-14. 
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Figure 12. Evaluation of training vs testing performance for dataset 1 
 

       
 

Figure 13. Evaluation of training vs testing performance for dataset 2  
 

       
 

Figure 14. Evaluation of training vs testing performance for dataset 3 
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4. Conclusions  
 
The selection and categorization of ensemble method feature sets were used to create an 
effective intrusion detection system for the cloud environment. This EBWO strategy, which 
is our proposed feature selection method, was utilized to choose a useful reduced feature 
set from provided intrusion datasets. DNetCNN and HMLSTM were used as part of an 
ensemble for categorizing different assault types. The main objective of the ensemble 
approach was to improve prediction accuracy over all other classifiers. Additionally, we 
assessed this suggested study using three separate intrusion datasets and applied FPR, 
FNR, precision, recall, DR, and accuracy to determine the effectiveness of classification. 
Thus, we established that the suggested strategy significantly improved the accuracy and 
endurance of a variety of categorization assignments, thereby supporting FS and important 
IDS processes. The results of our suggested method were 99.16% accuracy, 98.87% 
precision, 99.03% recall, and 98.65% F-Score. 

However, the model proposed in this study had some limitations, such as a large 
number of parameters and a lengthy running time, both of which had an impact on the 
detection accuracy. As we continue to explore the model light-weighting, we will be able to 
further enhance the minority sample detection accuracy, the method's overall 
categorization effect, and the running time cost. 
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